
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this column as follows: Timothy R. Culp: Easing the Transition from C++ to Java (Part 2), in
Journal of Object Technology, vol. 1, no. 4, September-October 2002, pages 59-73.
http://www.jot.fm/issues/issue_2002_09/column5

Easing the Transition from C++ to Java
(Part 2)

Timothy R. Culp, Harris Corporation ORIGIN Laboratory and Rollins College

In Part I of this article [1], we discussed how to address the problem of making Java and
C++ co-exist in the same baseline. We introduced the Java Native Interface Simplified
(JNIS) Framework as a simple mechanism that relies on common design idioms such as
the Command and Observer patterns [2]. Instead of depending directly upon the JNI
interface, we hide the details of JNI behind a set of C++ and Java wrappers for
Commands, Events and Listeners shown in Figure 3.

JavaCommand

execute()
realExecute()

JavaEvent

attach()
detach()

JavaLis tener

update()

NativeCommand

execute()
preExecute()
postExecute()
nativeExecute()

NativeEvent

attach()
detach()

BatteryImpl: :Construct
Battery

BatteryImpl::Power
ChangeEvent

BatteryImpl::Power
ChangeListener

JBattery::Construct
Battery

JBattery::Power
ChangeEvent

JBatteryMonitor::Power
ChangeListener

NativeListener

update()
eventNo()

Figure 3: Class Diagram for JNIS Framework

NativeMessage

put(key : String, value : <T>)
get(key : String) : <T>
formatMethodArgs()
parseReturnArgs()

JavaMessage

get(key : String) : <T>
put(key : String, value : <T>)
parseMethodArgs()
formatReturnArgs()

JNI

In Part II of this article, we will show specifically how C++ libraries service Java native
commands. We will show how to use pluggable factories to map Java native calls to C++
objects. We will also show how to attach Java listeners to C++ events for notification of
state changes in the C++ library.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/column5

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

1 CREATING JAVACOMMANDS

Part I takes us through the Java side of the JNIS Command hierarchy by discussing the
class relationships from top to bottom. We talked about the NativeMessage base class
that provides “get” and “put” operations for mapping keyword-value pairs into messages
for the method and return arguments. We also talked about the abstract NativeCommand
class that provides a native “execute” method. Finally we gave a concrete example of a
NativeCommand called ConstructBattery with an argument for the starting power
level. We will continue walking through the class relationships on the C++ side and work
our way from the bottom to the top.

If you have a Java NativeCommand to construct a battery then there has to be a
corresponding C++ JavaCommand that knows how to execute the command. Notice
JNIS does not get away from writing proxy pairs. There is still a remote proxy on the
Java application side and a native proxy on the legacy C++ library side. The advantage is,
we are declaring these proxies as subtypes of NativeCommand and JavaCommand. In
this way our proxy pairs are not directly dependent on the JNI interface. Therefore
programmers responsible for setting up these pairs are shielded from the details of JNI.
By encapsulating the details of the transport layer, our baseline dependency on JNI
remains constant regardless of the number of proxy pairs added to our system.

2 USING NAMESPACES

There are numerous commands, events and listeners we will use to service the remote
Java requests on our C++ battery. The easiest way to group all these related classes is
within a C++ namespace. We can create a namespace that wraps all of the commands,
events and listeners associated with the implementation of a C++ battery. The
combination of the namespace and class names guarantees a unique signature for
identifying a particular command or event going through JNI.

namespace BatteryImpl {

class ConstructBattery : public JavaCommand {
public:
 virtual void realExecute() {…}
};

class DrawPower : public JavaCommand {
 virtual void realExecute() {…}
};
…
} // namespace BatteryImpl

The “Real” execution

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 61

3 THE “REAL” EXECUTION

The C++ ConstructBattery command class is symmetrical to the Java
ConstructBattery class. Just like the Java ConstructBattery command inherits
all the put and get methods from the NativeMessage base class, the C++
ConstructBattery command inherits get and put methods from the JavaMessage
base class. On the Java side, we put in a value for keyword “power” and are expecting to
get a return value for keyword “this”. Therefore, we will have a corresponding get for
keyword “power” and a put for keyword “this” on the C++ side:

namespace BatteryImpl {

static Battery* battery = 0;

void ConstructBattery::realExecute() {
 if (!battery) {
 int power = getInt(“power”);
 battery = new Battery(power);
 put(“this”, battery);
 }
}
…
} // namespace BatteryImpl

Why does Java want a “this” reference to a C++ battery object when Java cannot really
do anything with a C++ pointer? It turns out to be convenient for Java to hold onto the
reference of native objects it creates even if it is just an opaque handle. One reason is the
pointer could be used to indicate an error in lieu of exceptions (ie. null return indicates
the construction failed). Another reason is Java may want to pass the reference along to
other native commands. This turns out to be such a common idiom that we added
getReference() and putReference() methods to both the NativeMessage and
JavaMessage base classes where the keyword is implicitly known to be “this”.

4 THE JNI EXECUTE STUB

So far we’ve explained how Java puts its method arguments into a NativeCommand. We
have also explained how C++ gets those arguments from a JavaCommand, executes the
command with the given arguments and puts any return arguments back. We have not
explained how the arguments are transferred between Java and C++.

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

If you remember from the first article, the Java compiler generates a C prototype
when using the jni option for any method declared with the native keyword. The native
method in our NativeCommand class is called execute:

public class NativeCommand {
 …
 private native String execute(String args);
 …
}

The java compiler produces the following stub:

JNIEXPORT jstring JNICALL
Java_com_org_jni_NativeCommand_execute
 (JNIEnv*, jobject, jstring);

This is a prototype for a native C function that services the Java NativeCommand
method called execute. It takes a jstring as a method argument and returns a jstring
as a return argument. The jobject argument is a reference to the Java object for which
this method was invoked. The JNIEnv argument is the handle we must use for
performing any work on this Java object.

5 PARSING INCOMING ARGS

What works needs to be done? Recall that when the native execute method gets invoked
from Java, the format of the command string is going to be the name of the C++ native
proxy class followed by a list of keyword-value pairs for the incoming arguments. The
ConstructBattery command is formatted into the following string:

BatteryImpl::ConstructBattery { power 100 }

This formatted command string will come into our native C function as the jstring
argument. The jstring can be converted from a 16 bit UTF to an 8 bit C string by using
the GetStringUTFChars() method on the JNIEnv class [3]. Since we know we will
be parsing the string, it’s best to store it immediately into a C++ istringstream.

JNIEXPORT jstring JNICALL
Java_com_org_jni_NativeCommand_execute
 (JNIEnv *env, jobject obj, jstring args) {
 jboolean owner;
 istringstream myArgs(
 env->GetStringUTFChars(args, &owner));
...…

Using Factories

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 63

6 USING FACTORIES

Now that we have the command wrapped in an istringstream, how do we know
which C++ object to invoke? We need the commands to be open ended so we can support
a wide variety of commands. A hard-coded switch statement of commands is not going to
be acceptable. This is a perfect application for a pluggable factory [4]. A factory defers
the creation of the proper subtype of an object to another class. In this case, we will use
an STL map that associates a command name to a particular instance of an object that
knows how to execute that command [5]. All command objects will register themselves
into this map during static initialization. This is typically accomplished by having each
command class own a static instance of itself, which enables it to register while
constructing during static initialization. We can find the right command object by looking
up the unique command class name in the registry.

string cmdName;
JavaCommand* cmd = 0;

myArgs >> cmdName;
cmd = dynamic_cast<JavaCommand*>(
 theRegistry[cmdName]);

The reason for the dynamic cast is the registry actually contains a set of JavaMessage
pointers. This allows the registry to store JavaEvents and JavaListeners as well as
JavaCommands.

7 EXECUTING THE COMMAND

Once we have a handle to the proper JavaCommand, we pass the remainder of the stream
to the execute method:

 string returnArgs;
 if (cmd) returnArgs = cmd->execute(myArgs);

The default behavior of the execute method is to first parse the incoming arguments,
invoke the polymorphic realExecute() method, then return the formatted arguments
back to Java:

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

string JavaCommand::execute(istream& is) {
 parseMethodArgs(is);
 realExecute();
 return formatReturnArgs();
}

The two methods, parseMethodArgs() and formatReturnArgs(), are helper
functions in the JavaMessage base class that handle the details of parsing/formatting the
keyword value pairs. The realExecute() method is defined by the derived class that
knows how to execute the command.

8 RETURNING TO JAVA

Once the command is executed, there is some small cleanup that needs to be performed.
We will use the JNIEnv object to release the jstring so we do not prevent the JVM
garbage collector from recovering the memory [6]. We also use the JNIEnv object to
return the formatted return arguments back to Java:

if (owner==JNI_TRUE) {
 env->ReleaseStringUTFChars(
 args, myArgs.str().c_str());
}

 return env->NewStringUTF(returnArgs.c_str());
}

We have now covered the execution of a native command from the point it is first created
in Java through the C++ library and back again. The interaction diagram in Figure 4
shows the sequence of operations from the Java programmer’s perspective while Figure 5
shows the sequence of native operations in C++:

Returning to Java

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 65

command :
JBattery: :Const ructBattery

command :
NativeCommand

command :
NativeMessage JNIJBattery

preExecute()

put(String, <T>)

formatMethodArgs()

Java_..._jni_Nat iveCommand_nativeExecute()

parseReturnArgs()

get(String)

Figure 4: Sub-Object Sequence Diagram for ConstructBattery Command

// preExecute
put("power", startPower);

postExecute()

// postExecute
batteryRef = get("this");

execute()

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

JNI
command :

JavaCommand
command :

JavaMessage
command :

BatteryImpl::ConstructBattery
battery :
Battery

newCommand()
execute()

parseMethodArgs()

realExecute()

get(String)

power=get("power");

new Battery()
put(String, <T>)

formatReturnArgs()
put("this",&battery);

Figure 5: Sequence Diagram for Native ConstructBattery Command

9 JAVAEVENTS AND JAVALISTENERS

Now that we understand the basic mechanics for executing commands, attaching and
listening to events are not much different. To create an event on the Java side, we derive a
specific event from NativeEvent. The derived event class knows the name of the
specific native proxy that will implement this event. Likewise, we derive a specific event
from JavaEvent on the C++ side that is responsible for its implementation. In addition
to the event classes, we also define a NativeListener and a JavaListener that
knows what actions need to be taken when the event takes place.

As an example let’s follow the flow of control when propagating a “power change”
event through the JNIS framework. The JBattery class will define an event called
PowerChangeEvent and the JBatteryMonitor class will define a listener called
PowerChangeListener.

JavaEvents and JavaListeners

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 67

public class JBattery {
 class PowerChangeEvent extends NativeEvent {
 public String nativeProxy() {
 return “BatteryImpl::PowerChangeEvent”;
 }
 }
 …
}

public class JBatteryMonitor {
 class PowerChangeListener implements NativeListener
 {
 void update(NativeEvent e) { … }
 int eventNo() { return JBattery::PowerChange; }
 void String nativeProxy()
 { return “BatteryImpl::PowerChangeListener; }
 }
 …
}

During the construction of the JBatteryMonitor, our controller is going to create a
battery, create a listener for a specific battery event and then attach the listener to the
battery.

public JBatteryMonitor(int startPower) {
 theBattery = new JBattery(startPower);
 theBattery.addNativeListener(
 new PowerChangeListener());
 …

10 DEFINING PROXY EVENTS

The JBattery remote proxy class contains a list of enumerations that describe the type
of events it supports. It also contains a private list of all these events. These events are
populated during the construction of a JBattery. It provides a method for attaching a
given listener by calling the addNativeListener() method on the appropriate event.
Note that the PowerChangeListener does not derive from NativeListener since
NativeListener is an interface. The only restriction on any native listener is that it
implements an update() and an eventNo() method:

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

public class JBattery {
 public static final int FullPower=0;
 public static final int PowerChange=1;
 …
 private NativeEvent[] theEvents;
 …
 public JBattery(int startPower) {
 theEvents = new NativeEvent[4];
 theEvents[0] = new FullPowerEvent();
 theEvents[1] = new PowerChangeEvent();
 …
 }

 public void addNativeListener(NativeListener l){
 NativeEvent event = theEvents[l.eventNo()];
 event.addNativeListener(listener);
 }
 …
}

11 ATTACHING PROXY LISTENER

The actual attaching is not done by the derived PowerChangeEvent class but by the
base class NativeEvent. It handles the details for mapping a native event to a native
listener. In the NativeCommand class, we had a native execute method that forwards a
message to the native API containing the command name and the list of arguments. For
an event, we have a native attach() method that will forward the name of the event and
the listener to the native API so they can be mapped together. Likewise, there will be a
detach() method that will forward the name of the event and the listener to the native
API so the association can be unmapped when the listener is no longer interested in
participating:

public NativeEvent {
 public void addNativeListener(NativeListener l) {
 attach(nativeProxy(), l.nativeProxy());
 }

 private native String attach(
 String eventName, String listenerName);

 private native String detach(
 String eventName, String listenerName);
 …
}

Mapping Remote/Native Proxies

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 69

12 MAPPING REMOTE/NATIVE PROXIES

Unlike the native execute method, the native attach function is not concerned about
incoming arguments. Since it is only interested in the names of the event and listener, we
can convert them directly into strings and look them up in the registry. If we find valid
C++ events and listeners registered for those names, then we can attach them together.
The event attach() method just adds the given listener to an internal list of objects to
be notified when the event occurs. We also store the reference to the jobject
NativeEvent for which this attach is being called because this Java reference will
forward updates to Java listeners.

JNIEXPORT jstring JNICALL
Java_com_org_jni_NativeEvent_attach(
 JNIEnv* env, jobject evtRef, jstring evt, jstring lst)
{
 …
 string evtName(
 env->GetStringUTFChars(evt, &owner1));
 string lstName(
 env->GetStringUTFChars(lst, &owner2));

 JavaEvent* event = 0;
 event = dynamic_cast<JavaEvent*>(
 theRegistry[evtName]);

 JavaListener* listener = 0;
 listener = dynamic_cast<JavaListener*>(
 theRegistry[lstName]);

 if (event && listener) {
 event->attach(listener);
 listener->setEvent(evtRef);
 }
 …
}

The C function for the native detach is identical except a detach() method is invoked
on the event object instead of an attach(). The native attach and detach functions can
easily be combined into a single function with a flag that denotes whether you are
attaching or detaching.

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

13 KEEPING PROXIES IN SCOPE

One subtle gotcha with the JNI interface is the lifetime associated with a jobject
reference. Even though a java object may stay in scope throughout our java application,
there is no guarantee that the jobject reference will remain valid beyond the call of the
native method in which it was invoked. It is maintained by the JVM as a local reference
on an environment call stack.

Our attach method associates a jobject event reference to a native C++ listener
during one native call. The notification of updates happens during a subsequent native
call. Thus the jobject event reference will be stale by the time we are ready to use it.
The JNI interface provides a mechanism to allow you to continue to use the same
jobect reference through multiple native calls by creating a global reference. We can
bury the details of creating and releasing global references inside the setEvent() and
clearEvent() methods which get invoked during the native attach and detach
operations:

void JavaListener::setEvent(jobject evtRef) {
 theEvent = theJNIEnv->NewGlobalRef(evtRef);
}

void JavaListener::clearEvent() {
 if (theJNIEnv && theEvent) {
 theJNIEnv->DeleteGlobalRef(theEvent);
 theEvent = 0;
 }
}

14 FORWARDING NOTIFICATIONS

Now that we have a mapping between a native C++ listener and jobject event
reference, we can use this mechanism to forward state changes to Java. A model change
on the battery forces the event to notify all of its observers. For instance, a drawPower()
call on our C++ battery invokes a PowerChange event. It might also invoke a LowPower
or NoPower event as well, depending on the current state of the battery. One of the
observers in the PowerChange event is the native C++ Listener that holds a reference to
the jobject event reference. The update method on the native C++ Listener gives the
listener an opportunity to format a message by using put calls for any arguments we need
to forward:

Forwarding Notifications

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 71

namespace BatteryImpl {
…
void PowerChangeListener::update(Event* e){
 PowerChangeEvent* evt = 0;
 evt = dynamic_cast<PowerChangeEvent*>(e);
 if (evt) {
 put("power", evt->battery()->getPower());
 }

 forwardNotify();
}
…
} // namespace BatteryImpl

15 INVOKING REMOTE METHODS

Forwarding the notify to the jobject event reference is interesting because this is the
first time we see C++ invoking a method on a Java object. We use our JNIEnv reference
to get the class type for the jobject we stored at the time we attached the C++ listener
to a Java event. We use the same JNIEnv reference to get the method ID on the
NativeEvent class type for forwarding the notification. We must pass in the name of
the method we wish to call as well as a string that describes the method signature (the
signatures of Java methods are found by using “javap –s”). Finally, we make the call
through the JNIEnv reference using the jobject reference, the method ID and a new
UTF String with the return arguments:

void JavaListener::forwardNotify() {
 jclass NativeEvent =
 theJNIEnv->GetObjectClass(theEvent);

 jmethodID notify = theJNIEnv->GetMethodID(
 NativeEvent,"notify","(Ljava/lang/String;)V");

 theJNIEnv->CallObjectMethod(
 theEvent,
 notify,
 theJNIEnv>NewStringUTF(
 formatReturnArgs().c_str()));
}

EASING THE TRANSITION FROM C++ TO JAVA (PART 2)

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

16 UPDATING THE CONTROLLER

Once the jobject’s method is called, control is transferred to our specific Java
NativeEvent object; in our case, the Java PowerChangeEvent object. This object will
get any return arguments, such as the “power” argument that was put in by the C++
PowerChangeEvent object. The Observer pattern will continue by having the Java
NativeEvent update all of its NativeListeners so the listener can perform whatever
actions are appropriate. The PowerChangeListener in our JBatteryMonitor
controller has an update method that gets the new power level and updates a progress bar:

public class NativeEvent {
 …
 protected void notify(String returnArgs) {
 parseReturnArgs(args);
 theListener.update(this);
 }
}

class PowerChangeListener
 implements NativeListener {
 public void update(NativeEvent event) {
 int power = event.getInt("power");
 theProgressBar.setValue(power);
 …
 }
}

17 CONCLUSION

Walking through the entire framework and trying to understand all the details of JNI and
the method of communication through the patterns is challenging. Once you have worked
through a few examples, the framework itself is very simple to use. Java commands can
execute C++ libraries simply by deriving from NativeCommand and overriding the
execute method to put arguments into a command and get return parameters back. C++
can respond to these commands simply by deriving from JavaCommand and overriding
the realExecute() method to get arguments from the command and put return
parameters back. C++ commands must also register themselves on a list so the number of
commands supported is open ended. The mechanism for defining events and listeners is
essentially the same.

We continue to work on the JNIS framework to move it out of the prototype stages
and more into an industrial strength solution. We are currently adding an exception

Conclusion

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 73

handling mechanism to propagate exceptions through the JNI transport layer. We are also
adding environment stacks to handle multi-threaded calls through the API.

Once you have a framework for Java to access existing C++ services, the next
logical extension is to distribute these legacy services to network applications.
Lightweight Java clients using RMI can invoke remote methods on Java servers. These
Java servers can either implement the services directly or choose to use JNIS if an
existing C++ implementation is already available.

ACKNOWLEDGEMENTS

To Katee, for all the things in life that can’t be programmed.

REFERENCES

[1] Culp, T. Easing the Transition from C++ to Java (Part 1), in Journal of Object
Technology, vol. 1, no. 2, July-August 2002, pages 79-93.
http://www.jot.fm/issues/issue_2002_07/column7

[2] Gamma, et. al. Design Patterns, 1st Ed., Addison-Wesley, Reading, MA. 1995.

[3] Gorden, essential JNI, Prentice Hall, 1998.

[4] Culp, T. “Industrial Strength Pluggable Factories”, C++ Report, 11(9), Oct. 1999.

[5] Gamma, et. al. Design Patterns, 1st Ed., Addison-Wesley, Reading, MA. 1995.

[6] Gorden, essential JNI, Prentice Hall, 1998.

About the author

Timothy Culp is the Chief Software Architect for the Harris Corporation
ORIGIN Laboratory and an Instructor at Rollins College. He can be
contacted at timothy.culp@computer.org.

http://www.jot.fm/issues/issue_2002_07/column7
mailto:timothy.culp@computer.org

