
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this column as follows: Dave Thomas: Reflective Software Engineering from MOPS to
AOSD, in Journal of Object Technology, vol. 1, no. 4, September-October 2002, pages 17-26.
http://www.jot.fm/issues/issue_2002_09/column1

Reflective Software Engineering - From
MOPS to AOSD

Dave Thomas, Bedarra Corporation, Carleton University and University of
Queensland

Reflective Programming has long been viewed as an elegant but academic subject that is
of interest only to educators and researchers. The seminal work on Procedural Reflection
by Brian Smith clearly articulated the benefits of allowing an executing program to have
access to the underlying data structures and algorithms that govern its own computation
[1].

The first implementation of the reflective tower was in 3Lisp. This was followed by
work in the Lisp [2, 3]) and Smalltalk communities [4]. The research work on reflection
has most frequently appeared in OOPSLA [5,6] and ECOOP conference proceedings as
well as Reflection conferences dedicated to the subject [7]

To many outsiders, the phrase “going meta” conjures up visions of taking a trip to
Nepal as opposed to a way of thinking about software development. However, those who
have experienced the “engine room” via a Scheme meta-circular interpreter (see www-
mitpress.mit.edu/sicp), or Smalltalk or CLOS meta-class programming, have a
fundamentally deeper perspective on computation.

1 EVERY COMPUTER SCIENTIST SHOULD GO META AT LEAST
ONCE IN THEIR LIFE

While other software professionals and researchers are confounded or left obsolete by the
frequent changes in language and computational infrastructures, the software
professionals who have reflective experience are much more resilient to these same
changes. For many years students have remarked on the “aha” impact of seeing the
“elementary particles of computation”. Actually seeing these variables, environments,
expressions, closures, and continuations miraculously opens up a whole new perspective
on the simple read-eval-print loop.

Unfortunately far too many CS/SE faculty members fail to teach or even appreciate
the reflective view of computation. Providing and understanding the meta view is, for
computer scientists, the analog of understanding Laplace transform theory for differential

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/column1

 REFLECTIVE SOFTWARE ENGINEERING – FROM MOPS TO AOSD

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

equations in mathematics. In the transformation space, the original problem is replaced
by a much simpler one that can be easily understood and solved then mapped back or
reflected into the original problem space.

Many who lack this perspective puzzle over the semantic account of a new language.
Those with a deeper understanding of reflective mechanisms can quickly toss off the
syntactic baggage of a new programming language and easily identify and focus on its
unique features and anomalies. In addition, those languages designed with a clear
semantic account actually seem to have fewer anomalies and so do not require behavior
experiments or huge amounts of source code debugging in order for the developer to
understand the compile and runtime features of the language.

2 PROGRAMS AND DATA NEED SELF DESCRIPTION

A language without reflection is much like a database without a schema. Serialization of
complex object structures in Smalltalk and Java is only possible because the languages
have class information present at runtime. A more recent example is found in Web
Services where the primary advantage of SOAP over CORBA and RMI is the ability of
messages to be more self-descriptive. It is a sad commentary on our industry that it has
taken so very many years to appreciate this simple and powerful idea. Now that we have
rediscovered it let’s hope we remember it.

While it can be argued that some programmers don’t need meta-programming
facilities, those who build development IDEs and runtime support such as debuggers
definitely do! The lack of standardized, easily used meta information for C++ was a
major inhibitor for C++ tool developers. Significant efforts were required to rebuild the
meta model for compiler artifacts (see Lucid Energize, VisualWorks for C++, IBM
Research Montana)

Java’s weak reflective model was extended and is essential for the tools that
manipulate programs such as GUI Builders, code generators, and debuggers. The
MS.NET facilities for meta-programming are widely recognized as providing an elegant
facility for developers to annotate programs and provide both descriptive and site specific
optimization information to JITs, and underlying runtimes. For example, it is possible to
annotate a specific C# call at the use site to have code generated for a special legacy
calling sequence or to generate a SOAP message without changing the C# code.

3 EVERY MODEL NEEDS A META MODEL

For many software engineers, the whole idea of reflective computation seems impractical
at best and silly at worst. Meta Models have long been used and appreciated in the
modeling community. However for many years Meta Modelling was something that
some architects did and then used the results to generate the concrete descriptions and
code for developers. Meta Models are also well accepted by tool vendors. For many years

Programs And Data Need Self Description

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 19

vendors used their own efforts to build intelligent Case (iCase) Meta Models such as IBM
ADCycle that would support automated code generation (MDA circa 1980?).

Meta modelling especially without the right tool support also requires a great deal of
experience and discipline. Hence many early meta models contain numerous defects or
leak at the seam from one meta level into the other. There is of course a danger that when
one goes meta several levels, all interesting problems become easy, because the higher-
level abstractions have removed essential and important details. These challenges lead
many to view meta models with considerable scepticism.

Recently the desire to provide a unified semantic basis for UML and UML
extensions and other OMG related efforts such as EDOC, and Model Driven Architecture
have resulted in renewed interest in meta models in the form of the OMG Meta Object
Facility (MOF) [8]. The MOF also enables standards such as UML Diagram interchange
and UML - XML Metadata Interchange (XMI). It is the MOF of course that makes UML
a moving target since UML is easily morphed into something completely different by
extending the MOF. Perhaps this will lead to a meaningful semantic account for UML, at
least one can hope.

UML, MDA and Ontology in XML have resulted in a renewed research interest in
Meta modelling under the name of Model Engineering (see www.metamodel.com/wisme-
2002).

4 AOSD: COMPOSITION FILTERS, ASPECTS, AND MULTIPLE
DIMENSIONS OF CONCERN

This once rarified idea of meta-programming is threatening to become an everyday
practice in software development. The large attendance and excitement at the recent 1st
International Conference on Aspect Oriented Software Development (AOSD) (see
http://trese.cs.utwente.nl/aosd2002/) shows the considerable interest in AOSD in the
academic and industrial research community.“ Aspect-oriented software development is a
new technology for separation of concerns (SOC) in software development. The
techniques of AOSD make it possible to modularize crosscutting aspects of a system”
www.aosd.net.

AOSD (see also the October 2001 issue of Communications of the ACM) has its
origins in the following research efforts –

Composition Filters (see http://trese.cs.utwente.nl/composition_filters/);
AspectJ (see www.aspectj.org/servlets/AJSite);
Multi-Dimensional Separation of Concerns (MDSOC) and HyperJ (see
www.research.ibm.com/hyperspace/);
and Demeter DJ (see http://www.ccs.neu.edu/home/lieber/AOP.html and
www.ccs.neu.edu/research/demeter/DJ).

http://www.metamodel.com/wisme-2002
http://trese.cs.utwente.nl/aosd2002/
http://trese.cs.utwente.nl/composition_filters/
http://www.aspectj.org/servlets/AJSite
http://www.research.ibm.com/hyperspace/
http://www.ccs.neu.edu/home/lieber/AOP.html
http://www.ccs.neu.edu/research/demeter/DJ
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=ACM&dl=ACM

 REFLECTIVE SOFTWARE ENGINEERING – FROM MOPS TO AOSD

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Both Composition Filters and Aspect Oriented Programming have their roots in
reflective computation whereas MSDOC and Demeter have evolved more from program
design ideas based on separation of concerns. Each allows separate, ideally orthogonal
concerns to be represented as a code fragment which is a statement about the changes to
be made to the underlying program. For the purposes of this article they address the same
issues with different approaches. However there are important differences in
implementation and use (see urls above).

5 SEPARATION OF CONCERNS

The most important contribution of the reflection community is to clearly illustrate the
potential of separation of concerns (see Parnas http://www.acm.org/classics/may96/) As
described by IBM HyperJ researchers "Separation of concerns is simply an approach to
decomposing software into modules, each of which deals with, and encapsulates, a
particular area of interest, called a concern. Examples of concerns are functions, data
types or classes, features (such as persistence, print, or concurrency control), variants, and
roles. Object-oriented languages permit decomposition by class, but only by class. Unlike
classes, other kinds of concerns cannot be encapsulated in single modules; instead, their
implementations end up scattered across the class hierarchy.” Researchers discovered that
by making simple programmatic changes at the meta-level, profound changes in the
underlying program could be effected without actually changing the program code.

Quickly other investigators showed that this provides elegant ways to separate
complex programming issues including concurrency and parallelism, persistence,
transactions, and security. For example, composition filters provides a simple software
composition approach for applying these techniques.

Despite these successes meta-programming and run-time reflection was abhorrent to
some software engineers and its use was hotly debated within the Smalltalk and Lisp
communities. Further the whole idea of procedural runtime reflection seemed completely
ridiculous for widely used languages such as C++. Many dismissed reflection as
potentially interesting as a thinking tool, but impractical for commercial use. I suspect
many of my readers still hold this view.

6 TAMING RUN-TIME REFLECTION

In the late 90s work on OpenC++ showed that many reflective changes could be achieved
at compile time without the overhead and complexity of meta-level facilities. Similar
efforts for Java, which use class file rewriting, have been proposed [9]. It is amazing what
really bright people will do when faced with a technology that isn’t amenable to their
research needs.

The work on providing procedural reflection for Java and C++ was not lost on
researchers at Xerox PARC who combined their interest in separation of concerns;

http://www.acm.org/classics/may96/

Taming Run-Time Reflection

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 21

compile-time reflection; and improved program development and maintenance to develop
the concept of Aspect Oriented Programming (AOP). The work on AOP and in particular
AspectJ implements reflection using a program transformer called a weaver. The
appropriately named weaver transforms the underlying program by weaving in each of
the aspects at their defined point of application.

Independently, researchers at IBM developed HyperJ that evolved from work on
subject oriented programming. Their research demonstrated that separate concerns could
be captured as code fragments and organized into hyperslices and hypermodules that can
be composed with tool support to construct programs that contain different concerns.

All of these systems use a set of orthogonal descriptions about the program and
induce program transformations. This can be implemented at the source code or for some
languages at the binary level, if the language has sufficient self-description such as Java
class files).

These results clearly show that it is possible to bring the benefits of the earlier
theoretical research into current languages such as Java, C# and UML. AspectJ and
HyperJ allow programmers to develop programs using AOSD today and provide practical
platforms for software engineers to explore the use of aspects/concerns.

7 GREAT MINDS OFTEN THINK ALIKE

To my knowledge the earliest use of such a technique appeared in a technical report on
Trellis-S (1988) where systematic substitution similar in concept to weaving was applied
to the language Trellis OWL to allow sequential programs to be automatically
transformed into distributed programs in the spirit of Emerald. It clearly showed the
benefits of such an approach for introducing the distribution aspect into a sequential
program. For many years the AI/Lisp community has used mixins and method
combination to adapt code without requiring explicit editing of the code. For Smalltalk,
the ENVY/Developer class extension, subapplication and image builder provide support
for weaving at image build time

The systematic generation of programs from descriptions has of course also been the
major focus of research in generative programming (see Generative Programming -
Methods, Tools and Applications", Addison-Wesley 2000) some of which also has its
roots in meta-programming and reflection. One of the interesting aspects of this work has
been the tailoring of algorithms. It is important to note that AOSD is not limited to OOP
and like pair programming and refactoring can also be applied to functional languages
[15].

 REFLECTIVE SOFTWARE ENGINEERING – FROM MOPS TO AOSD

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

8 ASPECTS VIOLATE ENCAPSULATION?

One of the major concerns of AOSD sceptics is the apparent violation of encapsulation
using AOSD. Program generation and weaving which appears to obliterate the original
program clearly violates encapsulation, the principal benefit of object orientation. AOSD
proponents argue that encapsulation happens at the level above the program where the
concerns are clearly and separately modeled. What does this mean for unit testing, aspect
testing and program correctness? This requires some new thinking on components,
especially for those who feel the clear need and benefit of binary components. Will it
really be possible to debug at the level of the abstraction? All of these challenges have of
course appeared before with the use of macros and program generators. This led at least
two of the participants in my ECOOP 2000 panel to argue that Aspects were really
nothing more than smart macro programming. It will take a very complete tool set to
convince many software engineers that they can count on AOSD to regenerate their
programs.

9 ORTHOGONALITY AND NUMBER OF DIMENSIONS?

Most of the reflective and AOSD examples are based on a small number of “orthogonal”
aspects. However, it isn’t clear as yet if large numbers of additional aspects will be
discovered. Perhaps like design patterns there will turn out to be a small set of well
known concerns which are used and reused in the practice of AOP. One clear challenge is
assuring that developers are aware of any interaction (non-orthogonal) between aspects
since this greatly increases the difficulty of understanding an AOSD design or program.
One of the reasons multiple inheritance has such a bad rap is that extensions beyond
specification inheritance (interfaces) and simple mixins were fraught with complex rules
and contributed to programs that were difficult to understand and maintain. HyperJ
provides tools to identify potential interactions between aspects that are essential if
AOSD is to move in this direction.

10 DYNAMIC ASPECTS

Some aspects approaches provide very flexible dynamic aspects that support what
amounts to predicate or instance based aspect execution. This can come very close to the
kinds of things done in fully reflective systems, but can also greatly complicate program
understanding, testing and verification. The presence of dynamic aspects in systems,
which throw exceptions and execute in concurrent and transactional environments seems
very daunting unless they are limited to a trusted infrastructure. In effect dynamic aspects
can result in self modifying programs which are very complex and difficult to test and

Dynamic Aspects

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 23

reason about (many similar techniques have been explored in the AI community
http://www.dreamsongs.com/NewFiles/HOPL2-Uncut.pdf.)

11 WHO WILL USE AOSD?

AOSD is one more of a number of concepts and practices that must be understood by
software professionals. It seems increasingly clear that all these advanced concepts such
as interfaces (separation of specification and implementation inheritance), patterns,
conformance and refinement hierarchies, and refactoring in addition to Java, C#, UML,
XML, MDA, SOAP/JINI/Messaging, and scripting, may collectively be just too much
stuff for day to day developers. Several of my colleagues argue that their students know
all of these concepts and that they can be taught to any programmer who wants to learn,
however my experience says that while students may have indeed seen all of them, most
of them become proficient in only a few techniques.

The reality is that we are growing an increasingly large gap between the skills of
professional software engineers and those of day-to-day application developers. If AOSD
can contribute to reducing the complexity of the software that day-to-day developers see,
it will be a wonderful contribution. It will be important to gain further experience to see
where it fits in the software development process – analysis, design, implementation,
reverse engineering etc. (see www.cs.ubc.ca/labs/spl/papers/2002/aosd02-
concerns.html).

12 APPLICATIONS – CAN ANYONE REALLY USE THIS STUFF?

As usual with any new development AOSD has yet to prove itself and find it’s place in
the design, development and maintenance of large software systems. However
preliminary experience reports from early adopters are encouraging. Given AspectJ,
HyperJ, DJ, AspectS and AspectR [10] developers can now gain practical experience. It
is clear that good tool support is essential and the very thought of debugging and
maintaining generated programs is going to require a convincing and compelling tool set.

Clearly AOSD like reflection will have an impact on the next generation of
developers and will give them a much better ability to deal with the complexities
associated with transactions, persistence, security, logging, tracing and exception
handling. At a minimum they should induce a discipline of program transformation in the
spirit that ER models are used to work above the level of the relational database
implementation.

One of the largest opportunities may be for EJB developers where simple business
logic is often tangled inside complex Java code for threads, transactions, security,
exception handling, logging etc. Perhaps it might be possible using AOSD to present the
business developer with a much simpler programming model, similar to transaction

http://www.dreamsongs.com/NewFiles/HOPL2-Uncut.pdf
http://www.cs.ubc.ca/labs/spl/papers/2002/aosd02-concerns.html

 REFLECTIVE SOFTWARE ENGINEERING – FROM MOPS TO AOSD

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

monitors such as CICS or Tuxedo, where the complexities of SMP, threads, caching,
security, transactional integrity, distribution and persistence are provided underneath by a
friendly and helpful weaver. AOSD techniques should be useful for those implementing
and reasoning about such middleware [13] [14]. AOSD should also be applicable at the
design level with UML and the implementation level for MDA. One simple example is
the Usecase concept of extensions or built on relationship that needs either runtime or
compile time modification of program behaviour.

13 THE ASPECT REFACTORING OPPORTUNITY

Most of the current application focus for AOSD is design, development or runtime usage.
My personal opinion is that the most exciting opportunity is an Aspect Refactoring tool in
the spirit of Aspect Browser [11] and Refactoring Browser for Smalltalk and Java [12]

Complex tangled programs evolve naturally due to the humans and circumstances
that create them. Usually different developers are unaware or unable to discern the
separate concerns. These tangled programs are largely responsible for holding companies
hostage to legacy code and further they induce fear in new developers who see significant
risk in attempting to enhance or repair defects in such complex systems. Surely aspect
refactoring will be a key technique for Agile/XP developers. It should allow them to
systematically reduce the complexity and rigidity of large legacy applications.

14 CONCLUSIONS

AOSD has the promise to unravel the tangled programs [16] we weave as software
evolves over the life cycle. Even more promising it may allow us to be free from the
“tyranny of the dominant decomposition” [17] that forces us to prematurely select one
design approach over another. AOSD tools provide new ways to describe, factor and
compose software, and perhaps most importantly to reverse engineer and/or refactor
legacy code. This combined with Agile/XP approaches to development could finally lead
to the end of "death march" projects and turn maintenance into a more creative
development activity. We will learn much more in the coming years as the early adopters
gain experience using AOSD, and associated tools become integrated into popular tool
sets.

REFERENCES

[1] B. C. Smith. Reflection and semantics in lisp. Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, pages 23--35,
1984.

References

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 25

[2] Objvlisp - Metaclasses are First Class: The ObjVlisp Model, P. Cointe, SIGPLAN
Notices 22(121): 156-167 (Dec 1987) (OOPSLA '87).

[3] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol.
The MIT Press, Cambridge, MA, 1991.

[4] Briot J.-P., Cointe P. Programming with Explicit Metaclasses in Smalltalk-80. In
Proceedings of OOPSLA '89, ACM SIGPLAN Notices, Vol. 23 No. 10, pp. 419--
431, 1989.

[5] Pattie Maes: Concepts and Experiments in Computational Reflection. OOPSLA
1987: 147-155

[6] Takuo Watanabe and Akinori Yonezawa. Reflection in an Object Oriented
Concurrent Language. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), September 1988.

[7] www.openjit.org/reflection2001

[8] www.omg.org/technology/documents/formal/mof.htm

[9] www.csg.is.titech.ac.jp/~chiba/pub/chiba-ecoop00.pdf,
www.cs.ncl.ac.uk/research/dependability/reflection/,
http://www.csg.is.titech.ac.jp/openjava/)

[10] www.prakinf.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/

http://aspectr.sf.net/

[11] www.cs.ucsd.edu/users/wgg/Software/AB/ and http://www.cs.ubc.ca/~jan/amt/

[12] http://st-www.cs.uiuc.edu/users/brant/Refactory/,
www.instantiations.com/jfactor/default.htm,
www-106.ibm.com/developerworks/library/l-eclipse.html

[13] www.ccs.neu.edu/research/demeter/evaluation/gte-labs/aosd2002/
CommercialAOSD_AOSD2002.ppt

[14] http://trese.cs.utwente.nl/Workshops/adc2000/papers/Filman.pdf

[15] Filman, R. E. and Friedman, D. P. Aspect-oriented programming is quantification
and obliviousness. Workshop on Advanced Separation of Concerns, OOPSLA.

[16] www.technologyreview.com/tr10_kiczales0101.asp

[17] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. Proceedings of the International
Conference on Software Engineering (ICSE'99), May, 1999.

http://www.openjit.org/reflection2001
http://www.omg.org/technology/documents/formal/mof.htm
http://www.csg.is.titech.ac.jp/openjava/
http://www.cs.ncl.ac.uk/research/dependability/reflection/
http://www.csg.is.titech.ac.jp/openjava/
http://www.prakinf.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS
http://aspectr.sf.net/
http://www.cs.ucsd.edu/users/wgg/Software/AB/
http://www.cs.ubc.ca/~jan/amt/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://www.instantiations/com/jfactor/default.htm
http://www-106.ibm.com/developerworks/library/l-eclipse.html
http://www.ccs.neu.edu/research/demeter/evaluation/gte-labs/aosd2002/CommercialAOSD_AOSD2002.ppt
http://trese.cs.utwente.nl/Workshops/adc2000/papers/Filman.pdf
http://www.technologyreview.com/tr10_kiczales0101.asp
http://portal.acm.org/citation.cfm?id=302457&coll=portal&dl=ACM&CFID=3935065&CFTOKEN=51421869
http://portal.acm.org/citation.cfm?id=302457&coll=portal&dl=ACM&CFID=3935065&CFTOKEN=51421869

 REFLECTIVE SOFTWARE ENGINEERING – FROM MOPS TO AOSD

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

About the Autor
Dave Thomas is CEO of Bedarra Corp., Adjunct Professor at Carleton
University, Canada and University of Queensland, Australia, founding
Director of AgileAllinace.com, and founder of Object Technology
International. Bedarra works with research labs and commercial
partners to transition innovations into products and practices.

