
A Run-time System for SCOOP

Michael Compton , CSIRO Mathematical and Information Sciences
Richard Walker , The Australian National University

Over a period of a decade Bertrand Meyer has promoted SCOOP – a concurrency mech-
anism designed especially for Eiffel – but no implementation has been made widely
available. In this paper we describe our initial implementation of SCOOP using the GNU
Eiffel compiler. We focus on the run-time system, showing how SCOOP’s synchroniza-
tion mechanisms depend on the solution of a dynamic mutual exclusion problem; we
give a solution using a thread and lock manager. We present a number of benchmarks,
and discuss which features remain to be completed.

1 INTRODUCTION

Bertrand Meyer [16–19] has proposed a concurrency model for Eiffel, now known asSim-
ple Concurrent Object-Oriented Programming(SCOOP). Although this model has been
discussed and developed in detail by Meyer, no implementation has been made widely
available in any Eiffel compiler. (According to Meyer, a development version of ISE Eif-
fel contained someSCOOPsupport, but this version was not made available to customers.)

The GNU Eiffel compiler, also known as SmallEiffel [7, 24], is an open-source Eiffel
compiler that is also an ideal framework for experimentation in compiler research. The
compiler is itself written in Eiffel and compiles Eiffel source code into C. We have used
it to develop a preliminary implementation ofSCOOP[8].

Section2 explains how theSCOOPmechanism works. Section3 provides a model that
explains what aSCOOPrun-time system must do. Section4 presents details of our design
and implementation. Section5 contains a number of benchmarks of our implementation.
Section6 indicates what needs further work and discusses language issues that have arisen
during the project.

2 HOW SCOOP WORKS

For convenience, we repeat here in summary form some of the definitions and rules
from Object-Oriented Software Construction, second edition [19] (hereafter referred to
as OOSC), supplementing them with our own where necessary. We begin by showing
how SCOOPappears in the syntax of the Eiffel language, and then proceed to define the

Cite this article as follows: Michael Compton and Richard Walker, A Run-time System for
SCOOP, in Journal of Object Technology, vol. 1 no. 3, Special issue: TOOLS USA 2002 pro-
ceedings, pages 119–157, http://www.jot.fm/issues/issue_2002_08/article8

http://www.jot.fm/issues/issue_2002_08/article8


A RUN-TIME SYSTEM FOR SCOOP

notions ofprocessorandsubsystem, and show how the mechanism is supposed to work.

Syntactic Changes

SCOOPadds concurrency to Eiffel using the new keywordseparate. This keyword may
be used in class headers and in entity declarations. The following terms from OOSC (to
which all page numbers refer) are used throughout the rest of this paper.

separate classany class whose class header begins:

separate class CLASS_NAME

The three qualifiersseparate, expanded1, anddeferred which may appear before
theclasskeyword are mutually exclusive and apply only to the class in which they
appear, not its heirs. (page 967)

separate type any type based on a separate class. (page 967)

entity a name in the software text that denotes a run-time value. This is any attribute of
a class, a variable local to a routine, or a formal argument of a routine. (pages 213,
1196)

separate entity any entity declared to be of aseparate type, for example:

x: SOME_SEPARATE_CLASS

(whereSOME_SEPARATE_CLASSis a separate class), or as

x: separate SOME_TYPE

(page 967)

Processors and Subsystems

Meyer introduces the notion of aprocessorto describe a unit of execution in an object-
oriented system. The creation of a separate object causes the creation of a new processor
to handle the processing of this new object. Concurrency inSCOOPis achieved by many
processors handling the actions of different objects in parallel.

processor an autonomous thread of control capable of supporting the sequential execu-
tion of instructions on one or more objects. (page 964)

This describes an abstract processor. Of course, a system is not bound by the number of
its CPUs; a system may have as many abstract processors as required.

1In Eiffel, every type is either areferencetype or anexpandedtype. The values of expanded types are
objects; the values of reference types are references to objects. For example, the values of the expanded
typeINTEGERare integers; the values of the reference typeINTEGER_REFare references to integers.

120 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



2 HOW SCOOP WORKS

If sequential processing with a single processor handling the actions of all objects
in one system is considered as the usual Eiffel processing model, how then is a system
involving multiple processors described? We introduce a model of multiple interacting
subsystems, so that at run time there is a system of processors, each handling the actions
of one subsystem (set of objects).

Definition 2.1 A subsystemis a model of a processor and the set of objects it performs
actions on. Within a subsystem, communication is synchronous and execution follows the
usual Eiffel sequential model. Communication between subsystems is asynchronous and
processing is in parallel. This potential parallelism is the result of a different processor
handling each subsystem.2

Definition 2.2 From the point of view of an object, any object in the same subsystem is
considered alocal object.

Subsystem

System

Separate Reference

Reference

Object Processor

Figure 1:SCOOPsystem structure. The left-hand image shows the usual Eiffel system with one
processor and only one thread of execution. The image on the right shows aSCOOPsystem with
multiple processors and interacting subsystems.

Figure 1 displays theSCOOPsubsystem structure. From the viewpoint of one sub-
system all its objects are local, but from the viewpoint of any other subsystem all those
objects are separate. This idea is explored further in Section3. The following definitions
apply to the run-time model of a program.

current object the target of the most recently started routine call. (page 1194) This def-
inition must be extended to account for the fact that aSCOOPsystem may have

2The terminology adopted here is consistent with that used by Attali [2] to describe a similar concept.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 121



A RUN-TIME SYSTEM FOR SCOOP

a current object in each subsystem. TheSCOOPdefinition states that thecurrent
object in a subsystem is the target of the most recently started routine call by the
associated processor.

separate object any object that from the viewpoint of one object is in a different sub-
system. At run time, any separate object can only be referenced (if reachable at all)
through a separate entity. (page 967)

separate referencea reference to a separate object. This reference must be through a
separate entity which is notVoid and not attached to a local object. This is a
restriction of the definition appearing in OOSC, as it takes into account the fact that
a separate entity may, at run time, become attached to a local object. (page 967)

separate call any routine callx.f(...) , where the target,x , is a separate object. Again,
this definition is refined to take into consideration the possibility of a separate entity
being attached to a local object. (page 967)

An Eiffel system withoutSCOOPcontains only one subsystem. In aSCOOPsystem
there is initially only one subsystem. The creation of a non-separate object results in the
creation of a new object in the same subsystem as the creator. However, when a creation
instruction is made on a separate entity, a new subsystem and a new processor are also
created. Objects may be shared between subsystems through separate references, but an
object belongs to only one subsystem and is separate from all others. When passing pa-
rameters to a routine that will be executed in a different subsystem, objects which are
values of expanded types are passed by copying.

Separate Calls

Consider the commandx.f(a) , wherex is attached to a separate object. Sincex is
attached to a different processor, execution in the current object can continue while the
commandf executes on the other processor. The current object andx synchronize;x
registers the fact thatf was called and can either start execution off straight away or
when the next opportunity arises. Then both the current call andx.f(a) can proceed
concurrently.

After making the initial call, more calls may be made onx . After registering each call
the processor making the call may continue its own execution. Multiple pending requests
are served in FIFO (First In, First Out) order.

Now consider the queryy := x.some_query(...) , wherex is attached to a
separate object. In this case, the client requires some result from the call and will be
required to wait until such a result is available.

Definition 2.3 (Meyer) SCOOP-wait-by-necessitystates that if a client has started one or
more calls on a certain separate object, and it executes a call to a query on that object, that
call will only proceed after all the earlier ones have been completed. Any further client
operations will wait for the query call to terminate. (page 989)

122 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



2 HOW SCOOP WORKS

(The termwait-by-necessitywas coined by Caromel [5] and adapted by Meyer.)

Consistency Rules

Consider the following situation in aSCOOPsystem with two subsystems,S1 and S2.
ObjectO1 in subsystemS1 has the following attributes:

x : SOME_TYPE -- not expanded or separate
y : separate ANOTHER_TYPE -- a reference

-- to subsystem S2

y is attached to the objectO2 on subsystemS2 (separate from the context ofO1). Assume
that a routine inO1 contains the call:

...
y.some_call(x)

...

ANOTHER_TYPEhas these definitions:

l : SOME_TYPE -- same type as x above
...

some_call(bad : SOME_TYPE) is -- traitor
do

l := bad -- traitor
bad.a_call -- mistaken call

...
end

Consider the consequences of the attachment ofx from O1 to bad in some_call of
O2 (the attachmentl := bad is similar) and the callbad.a_call . The attachment
results in a separate object becoming attached to an entity understood to be local and
the callbad.a_call is understood to require local processing, when in fact, separate
processing is required.

This misunderstanding, if allowed to proceed, would have the processor ofS2 execut-
ing actions on objects inS1. This means that two threads of execution could be acting on
the same subsystem, which could lead to race conditions and inconsistencies.

Meyer gives the nametraitors to the erroneous references mentioned above. He goes
on to define the following fourseparateness consistency rulesto ensure that such traitors
can be caught at compile time.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 123



A RUN-TIME SYSTEM FOR SCOOP

Note that Meyer considers that there is no harm in attaching a local object to a separate
entity. We shall call these objectsfalse separate objects.

Definition 2.4 A false separate objectis a local object that at run time becomes attached
to a separate entity.

Definition 2.5 False separate processing rule: the processing on a false separate object
should continue to be synchronous, as the object is attached to the same processor, despite
it being a separate entity. Allowing some other processor to handle the call would allow
two streams of execution in the one object.

In order to avoid traitors, situations where traitors could be created by simple assign-
ment must be eliminated.

Definition 2.6 (Meyer) Separateness consistency rule 1: if the source of an attachment
(assignment or argument passing) is separate, the destination entity must be separate too.
(page 973)

It must also be ensured that when passing references to separate objects, the target of
the call receives them correctly as separate entities:

Definition 2.7 (Meyer) Separateness consistency rule 2: if an actual argument of a sep-
arate call is of a reference type, the corresponding formal argument must be declared as
separate. (page 974)

The above rules eliminate the traitors introduced in the preceding example, forcing the
definitions inO2 to be changed to:

l : separate SOME_TYPE
...

some_call(good : separate SOME_TYPE) is
do

...

The false separate rules ensure that this feature can still be used and understood in the
synchronous way for a local call, which passes a local object as an argument.

There are other sources of possible traitors, and these too must be eliminated. Any
reference returned from a function call on a separate object is a source of possible traitors.
It is necessary to ensure that the target of the assignment is a separate entity.

Definition 2.8 (Meyer) Separateness consistency rule 3: if the source of an attachment
is the result of a separate call to a function returning a reference type, the target must be
declared as separate. (page 975)

124 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



2 HOW SCOOP WORKS

Note that for the above three rules, expanded types need not be considered, as values
of expanded types are passed by copy. However, in copying such values, none of the
attributes (if of a reference type) should be allowed to create traitors.

Definition 2.9 (Meyer) Separateness consistency rule 4: if an actual argument or result
of a separate call is of an expanded type, its base class may not include, directly or indi-
rectly, any non-separate attribute of a reference type. (page 975)

Reserving Objects

It can be demonstrated that, if the processors of two subsystems make interleaving calls
on an object in a third subsystem, the results will depend on the order of the calls. There
may be times that exclusive use of a separate object, and hence its associated subsystem, is
required. In order to maintain some level of consistency, there must be some mechanism
to obtain the exclusive services of an object and stop the interleaving of calls. Rather
than provide a further syntactic construct,SCOOPenables this mechanism by altering the
semantics of argument passing.

The meaning of:

some_method(x : TYPE1, ..., y : TYPE2)

is that the actual arguments to this call are passed to the call and used in its context.
However, the feature:

some_method(x : separate TYPE1, ..., y : separate TYPE2)

indicates that exclusive locks should be obtained on x and y before the call starts.3 Before
a call can proceed, all separate objects in the actual argument list must be locked. This
locking must be atomic, i.e. all locks are gained or none are gained and the processor
waits until all can be obtained.

Note that false separate objects passed in an argument list need not be locked. It is
useless for a processor to obtain a lock on its own subsystem.

Meyer goes further in theseparate call rule, to state that the features of a separate
object may not be called unless the object has been locked.

Definition 2.10 (Meyer) The separate call rule: the target of a separate call must be a
formal argument of the routine in which the call appears. (page 985)

3It is only necessary to gain a lock on an object if its features are used in the call. A lock should be
obtained onx only if there is somex.feature in the call. It is not necessary to gain locks for assignment
or argument passing. This allows the passing ofCurrent to separate objects without deadlock and also
allows for more concurrency in some situations. Meyer [19, page 990] proposes thebusiness card principle,
to avoid some deadlock conditions.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 125



A RUN-TIME SYSTEM FOR SCOOP

The separate call rule requires that the routine cally.some_call(x) shown at the
beginning of the section ‘Consistency Rules’ must now be further modified to conform to
the separate call rule.

call_y(locked_y: separate ANOTHER_TYPE) is
do

...
locked_y.some_call(x)

...
end

As this condition is checked at compile time, the call:

x.query_returning_a_separate_object(...).some_method

is strictly forbidden, even though in some cases it might in fact return a reference to an
object that was a formal argument of the current routine.

Waiting for Other Objects

This section discusses theSCOOPmechanism for waiting for conditions on an object to
become true before gaining an exclusive lock on that object.

Rather than introducing additional syntactic constructs to achieve conditional syn-
chronization, Meyer again chooses to extend the semantics of an existing construct in the
language. In the synchronous case, Eiffel’srequire clause is a correctness condition.

some_call(x : SOME_TYPE, ... ) is
require

x.some_condition
or x.some_value = another_value

do
...

The Boolean expressions listed in a require clause must be met in order for the routine
to meet its contract. Should any of them evaluate toFalse , an exception is raised in the
caller.4

Meyer extends the semantics ofrequire clauses so that a clause involving a sepa-
rate object becomes a wait condition. Consider the example in Figure2, adapted from
a bounded buffer program constructed during this project (assume thatELEMENTis an
expanded type – this means that it will be passed by copy to the bounded buffer).

4See theDesign by Contractconcept as described by Meyer [19].

126 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



2 HOW SCOOP WORKS

class SOME_CLASS
...

buffer: separate BOUNDED_BUFFER[ELEMENT]
...

!!element.make -- create element to add
add_to_buffer(buffer, element)

...
add_to_buffer(b: separate BOUNDED_BUFFER;

e: ELEMENT) is
require

b.not_full
do

b.put(e)
ensure

b.not_empty
end

Figure 2: A bounded buffer.

In this case, the require clause (stating that the buffer is not already full) is not a
correctness condition which needs to be met by the client, but rather a wait condition.
If the condition is not met, then the processor executing this action should wait until the
condition is met, before gaining the lock onbuffer and proceeding with the routine.
The need to satisfy wait conditions and gain locks is called theseparate call semantics.

Definition 2.11 (Meyer) The separate call semantics: before execution of a routine’s
body can start, a call must wait until every blocking object is free and every require clause
involving a separate object is satisfied. In this definition, an object isblocking if it is at-
tached to an actual argument and the routine uses the corresponding formal as the target
of at least one call.5 (page 996)

Eiffel’s assertion-checking mechanisms may normally be turned off at compile time.
This is not the case with any assertion containing separate objects. As these assertions
alter the semantics of a program (rather than provide a correctness condition), they may
not be turned off at compile time; they must always be used at run time.

As with the separate call rule (Definition2.10), it is necessary to ensure that a separate
object that is the target of a query in the require (or ensure) section of a routine must be a
formal argument of the enclosing routine. This in turn means that calls on separate objects
may not appear in the class invariant.

5Note that this definition has been changed from that found in OOSC as all calls, not just separate calls,
must follow these semantics. Also, ‘target of at least one call’ is taken to mean the target of any call in the
require, body, or ensure sections of the routine, not just the body.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 127



A RUN-TIME SYSTEM FOR SCOOP

3 A MODEL OF THE RUN-TIME SYSTEM

A SCOOPsystem can be modelled as a pair:

Ω = 〈S,O〉 (1)

Here,S represents the set of subsystems:

S= {S1,S2, . . . ,Sn} (2)

where eachSi (1≤ i ≤ n) is a subsystem. Each subsystem can be represented as a triple:

Si = 〈Pi,Ri,Oi〉 (3)

This representation of the three essential aspects of a subsystem is the direct mapping of
processors and objects as shown in Figure1, and the new concept of a request list. The
meaning of this model of a subsystem is:

• Pi models the processor which performs the execution of the subsystem;

• Ri is the model of the request queue, that is, a list of pending requests forPi to serve
(discussed further in the following subsection); and

• Oi is the set of objects in the subsystem.

The set of all objects in the system is modelled as

O = {o1,o2, . . . ,om} (4)

Oi is the set of objects inSi , and the setsOi , 1≤ i ≤ n form a partition ofO.

Any system that implementsSCOOPmust be able to model these concepts correctly. It
must be able to represent an Eiffel system as a set of interacting subsystems, partitioning
all objects into the correct subsystem and associating a processor with each subsystem.
A processor may only be active in the objects of one subsystem. However, a system may
not assume that because an entity in the software text is labelled asseparatethat it will
always be attached to a separate object at run time.

This model helps to show that although the software text contains the keywordsep-
arate, separateness is not a property of an object considered in isolation – it is relative,
as shown in Figure3. This, together with the false separate rule introduced in the subsec-
tion ‘Consistency Rules’, means that a system may not assume that all entities labelled as
separateare separate objects, and instead requires some mechanism to identify the actual
subsystem an object belongs to.

Calling Routines

The list of pending request calls onSi has been modelled asRi . What constitutes a request?
Obviously routine calls (with associated arguments) should be modelled as requests and
placed on the list forPi to serve. (Attribute accesses are handled as queries.)

128 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 A MODEL OF THE RUN-TIME SYSTEM

separate and local

Figure 3: Certain objects, although separate with respect to some contexts, can be viewed as local
objects with respect to objects in the same subsystem. For example, the labelled object is local
with respect to the subsystem at the bottom right, but separate with respect to the top subsystem.
If viewed in isolation, each subsystem is similar in concept to the usual Eiffel system.

Note that theSCOOP-wait-by-necessitymechanism (Definition2.3) allows for many
procedure calls (commands) to be issued to a separate object without waiting for their
completion, but the result of any query must be waited for.

The building of the request list proceeds as follows. When some processor, sayPj ,
requires the execution of some featuref on an object inSi , Pi andPj must synchronize,
and thenf can be appended to the end ofRi .

The model of execution inSCOOP is similar to the classic master-slave model. A
processor lies dormant until some service (modelled as a request) is called, at which time
it executes the call. If, after servicing a call, another call has been appended to the request
queue, this call is serviced too. The processor services all pending calls until none remain,
at which point it returns to a waiting (dormant) state. A processor in aSCOOPsystem
executes all of the pending requests in FIFO order.

A system implementingSCOOPis required to support a mechanism that permits mul-
tiple pending requests on a subsystem. This involves the (explicit or implicit) synchro-
nization of processors to ensure mutually exclusive access to the list and the ability for
the results of requests to be waited for.

Creating New Subsystems

When !!x.creation_routine is encountered, wherex is a separate entity, a new
subsystem and a processor for that subsystem are created. Initially, the subsystem contains
only one object (the object just created). The creation of a non-separate object, from any

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 129



A RUN-TIME SYSTEM FOR SCOOP

and processor

new subsystem,

(attached to x),
object

!!x.creation_routine

Figure 4: The creation of a separate object (in this case attached to the separate entityx) causes
the creation of a new subsystem and associated processor.

object in a subsystem, saySi , causes the creation of a local object inSi , thus expanding the
subsystem. Figure4 shows the process of subsystem creation. At the time of subsystem
creation the request queue of the new subsystem should contain only one pending request,
namely, the creation routine (constructor) of the new object.

A SCOOPsystem is required to have the ability to create new subsystems and proces-
sors during program execution; these subsystems may grow (in the number of objects) as
execution proceeds.

Once Routines

An aspect of concurrency not dealt with in OOSC is the semantics of Eiffel’sonceroutines
in a concurrent context. There are two basic options that should be considered.

1. Once routines are executed only once for the entire system. Each once function
is executed once by the first processor to call the function and after this all other
processors use the return value from this first execution.

2. Once routines are executed once for each subsystem. The first time a processor
encounters a once routine, the routine is executed. Any result from a once function
is used in that subsystem alone, irrespective of the results of once functions in other
subsystems.

Our model can be used to deduce which option is correct in the context ofSCOOP. The
actions of once functions are considered, as they can create a problem inSCOOPsystems.

130 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 A MODEL OF THE RUN-TIME SYSTEM

The choice will be made by considering a simple example. Assume that a class in an Eiffel
system contains the following once function:

some_function(...) : RESULT_TYPE is
once

...

Assume thatRESULT_TYPEis a non-separate reference type. Consider what would
happen if Option 1 were accepted as the correct semantics. ProcessorPi in subsystemSi
reaches the call to executesome_function first and performs the call, producing some
local object, sayoi , of typeRESULT_TYPE. If processorPj in subsystemSj then attempts
to call the function, the result has already been computed and the objectoi is returned.
However, objectoi is local toSi and thus the reference tooi in Sj is a traitor. This option
is obviously not correct.

Option 2 is correct in this context. Any result from a once function calculated inSi
is local toSi and has no impact on the results of once functions calculated inSj . Our
investigation shows that these semantics are correct; whether or not this is the intended
semantics is an open issue and it is not the intention of this work to assert Eiffel’s evolution
in this context.6 Note that if the once function returned a separate or expanded result, the
situation explained above could not occur. A non-separate reference result is the only
problematic case and resolving this case is enough for correctness in all situations.

There is a further issue raised by once functions in the context ofSCOOP. Defini-
tion 2.9 stated that values of expanded types can only be passed between subsystems if
they contain no non-separate reference entities. A refinement of this rule is required. If
an expanded class contained the once function given above, and an instance of this class
were passed between subsystems (as an argument to or result from a separate call), a
traitor would have been created through the once function.

Definition 3.1 The newSeparateness Consistency Rule 4: if an actual argument or re-
sult of a separate call is of an expanded type, its base class may not include, directly or
indirectly, any non-separate attributeor once functionof a reference type.

This is not the end of the matter. The classGENERAL, from which all classes in-
herit, contains a number of once functions that provide opportunities to create traitors
and inconsistencies. For instance, one of these problems isio (an instance of the library
classSTD_INPUT_OUTPUT). A special semantics could be added forio as the one I/O
stream is shared by all classes, i.e. all access toio could be implicitly synchronized by
the compiler. We developed a special classSYNCHRONIZED_STD_INPUT_OUTPUT
and an attributesio to allow for the correct use of the I/O file stream. This may be a

6Meyer has proposed extensions to the Eiffel language to allow for further options for once functions:
per-thread, per-system, per-object, per-time-period, and others. Note the per-system extension applies to a
per-installation of Eiffel, and per-thread applies to ISE’s threading mechanism, notSCOOP. This extension
does not cover the case presented above and thus an understanding of this issue is important for a correct
definition of once functions in the context ofSCOOP.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 131



A RUN-TIME SYSTEM FOR SCOOP

better option, as it makes the programmer explicitly aware of the issue. This option also
removes some race conditions that are possible when using the normalio , even when the
user could believe that they were doing so correctly. A further option could be to make
io a separate object, but this would necessitate obeying the separate call rule for every
call on io .

There are other inconsistencies inGENERALand ANY that break a variety of the
SCOOPrules. A work-around was constructed for each of these rules to allow this project
to continue, but each constitutes an issue that needs to be resolved in further development
of SCOOP.

Resource Allocation

A request for a lock on an object is in fact a request for a lock on the subsystem in which
the an object resides and a request for the exclusive right to issue calls to the associated
processor. InSCOOP, locks will be granted in a first come, first served order.

A simple example will give further insight into the locking aspect of the mechanism.

a_call(x : separate SOME_TYPE) is
do

...
another_call(x)

...
end

This call makes a request to lockx and then another request whilex is still locked. There
seems no reason why such a lock should be refused. Mechanisms such as the Java con-
currency mechanism allow this style of recursive locking. Personal communication with
Bertrand Meyer confirmed that this is the correct semantics to use forSCOOPas well. The
recursive locking rule is introduced for this reason.

Definition 3.2 Therecursive locking rule: if some processor has a lock on an object and
attempts to gain a further lock, it will gain this recursive lock. Each unlock rolls back one
level of the recursive locking. The object is not actually unlocked and available for use by
other processors until unlocking has reverted back to the highest level.

Mutual Exclusion

We now introduce a model of theSCOOP locking problem which serves to define the
problem and identifies a set of properties that must be satisfied.

Figure5 shows that theSCOOPlocking problem can be described in a manner similar
to the descriptions of mutual exclusion problems found in the literature [4]. As we will

132 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 A MODEL OF THE RUN-TIME SYSTEM

remainder

remainder

}

}

}

}

} critical

entry

exit

x.call(... separate objects ...)

end

is

...

do

...
...

...

call(... separate objects ...) 

...

require

calls on separate objects

Figure 5: It is possible to model the locking problem given by Meyer’sSCOOPas a mutual exclu-
sion problem. Here Eiffel code (a routine) is broken down into the usual remainder, entry, critical
and exit sections.

later be using an algorithm by Rhee [21] we use his terminology and adapt it to represent
theSCOOPproblem. A processor’s execution cycles through four stages: remainder, entry,
critical, exit, and then returns to remainder.

remainder The remainder section is the non-critical section. Its code does not make any
calls on separate objects.

entry The entry section contains the code provided by the mutual exclusion solution
to provide exclusive access to separate entities. The entry section in theSCOOP

problem waits, if necessary, for any separate preconditions (wait conditions) to be
satisfied and gains locks on all separate actual arguments to the call.

critical The critical section contains the code that requires the protection of mutual ex-
clusion. This section contains calls on separate objects.

exit The exit section contains the solution-provided code to release the resources exclu-
sively obtained in the entry section, including one level of recursively-held locks.

During execution of aSCOOPprogram, there is a subset of the processors that requires
exclusive access to a subset of the resources (subsystems). These resources need to be
acquired before executing a critical section.

When a processor leaves its remainder section, it selects some non-empty set of re-
sources and some possibly empty set of conditions. Letdt1

i
be the resource requirements

of processorPi leaving its remainder section at timet1. In order to leave the entry section
(and thus enter the critical section),Pi must acquire all resources and have all conditions
satisfied. This must be done atomically (from the viewpoint of other processors in the sys-
tem). The processor must acquire all resources and satisfy all wait conditions in a single
operation. If not, it must acquire none and wait until all can be gained.

This problem contains two interesting additions to the usual mutual exclusion prob-
lems.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 133



A RUN-TIME SYSTEM FOR SCOOP

1. The problem considered here is nested. While in its critical section,Pi may select
another possibly intersecting set of resourcesdt2

i
. For this set of resourcesPi enters

another entry→ critical→ exit cycle. The total resource requirements of a pro-
cessorPi at some timet is modelled asdt

i = dt1
i
∪dt2

i
∪ . . .∪dtn

i for all the nested
resource sets 1. . .n it has acquired.

2. Pi may select some set of conditionsC = {c1,c2, . . . ,cm} which must be met before
it leaves the entry section.

A common way to describe the conflicts between processors in such problems is to
use a conflict graph [6, 21]. In such a graph, the nodes represent processors and an edge
in the graph represents a conflict between processors. Nodes that share an edge have
conflicting resource requirements and may not enter their critical sections at the same
time. The conflict graph in this problem is dynamic. There is no prior knowledge of the
number of processors, their resource requirements, or the conflicts between processors;
two processorsPi andPj conflict at timet if dt

i ∩dt
j 6= {}.

In solving such problems it is necessary to ensure some liveness and safety properties.
In this case, we require the usual mutual exclusion properties of absence of individual
starvation, and freedom from deadlock.

Additionally, we require that aconcurrencycondition be satisfied. Informally, ifPi
is in its entry section and there are no conflicting processors, thenPi should enter its
critical section in some finite number of its own steps. Such a condition stops the under-
specification that would allow an overly restrictive mutual exclusion algorithm to solve
the problem by only allowing one processor to be active at any one time.

Note the ubiquity of synchronization in the system. There are no explicit synchro-
nization constructs, which means that any object can contribute to synchronization. It has
already been shown that any object (except for values of expanded types) can be shared
between subsystems and can thus be used as a separate object from some context.

The problem considered here is a type of dynamic resource allocation problem, where
the set of processors, their resource requirements and the conflicts between processors are
unknown [21]. The inclusion of conditions to the problem gives it aspects similar to the
general mutual exclusion problem GRASP [13]. The interaction can also be described as
a nested transaction system.

In general, it would be difficult to show that a run-time system always solves the
resource allocation problem presented above without deadlock. The programmer may
introduce deadlock into the program; compile-time deadlock detection is possible in some
cases but this option is not considered here. The run-time system must not deadlock,
however, when the user program is deadlock-free; the run-time system must satisfy the
above resource allocation constraints.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 DESIGN AND IMPLEMENTATION

4 DESIGN AND IMPLEMENTATION

SmallEiffel already has a stable run-time system. The performance of some aspects of this
system has been evaluated [24]. The SCOOPmodel affects only the interaction between
subsystems; within a subsystem processing is exactly as it would be in a normal Eiffel
system. Because of this, as much of the existing run-time system as possible should be
maintained when integratingSCOOP.

SmallEiffel requires a platform with an ANSI C compiler and aPOSIX run-time sys-
tem.7 We have tried to addSCOOP to the compiler in such a way as to maintain the
broadest level of platform compatibility as SmallEiffel. The only new library calls are
calls to routines defined in thePOSIX standard [10], or calls to routines introduced into
the run-time system. The target machine could be viewed as aPOSIX virtual machine.
This necessitates the use ofPOSIX threads to provide the concurrency aspects of the sys-
tem. In some ways this is similar to work by Foster and Taylor [9], who defined the notion
of an abstract concurrent machine. The interleaving of thread executions provided by the
pre-emptive scheduling ofPOSIX threads is assumed. This means that the system has lit-
tle to no control over the scheduling of threads. For this work we have chosen to restrict
ourselves to uniprocessor and symmetric multiprocessing architectures.

Design Goals

Our goals in the development of this system were:

low run-time costs There should be no extra run-time cost for non-SCOOPprograms; in
aSCOOPsystem the processing described for each subsystem should remain exactly
as for the normal Eiffel case. A small additional cost forSCOOPfeatures such as
communication and locking is expected. Experiments in Section5 show how some
of these costs were reduced.

small amount of introduced code The additions to the run-time system should be kept
as small as possible.

low memory cost Java systems are often concerned with the memory cost introduced by
concurrency (every object requires a monitor in Java). The aim forSCOOPshould
similarly be to introduce only a small memory overhead to the Eiffel run-time sys-
tem.

generality The system must continue to support all of Eiffel’s features, including dy-
namic binding, polymorphism, inheritance, genericity, once routines, and all the
SCOOPrequirements given in detail in the previous sections. The system should
also be general enough to work in each of SmallEiffel’s optimization modes and be
complete in all respects.

7Although SmallEiffel can also generate Java byte code, only the production of C code was considered
for this project.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 135



A RUN-TIME SYSTEM FOR SCOOP

On the issue ofgenerality, we have not considered inter-subsystem exceptions and
garbage collection in this project. See the subsection ‘Future Work’ for further comments
on this issue.

System Structure

Because of the concurrency constraints introduced bySCOOP, there must be the ability to
run the processors of multiple subsystems in parallel, or at least create the illusion of this.
To satisfy this constraint aPOSIX thread (processor) is associated with each subsystem and
an execution environment that this processor acts in is defined. The execution environment
described here is similar to a model derived for a Java system by Agesen [1]. Figure6
shows the structures for processors and subsystems.

processor { subsystem {
pthread_t thread_id ident domain_identifier
subsystem subsyst processor executer
pthread_mutex_t thread_mutex long lock_count
pthread_cond_t thread_cond processor current_locker
long time_stamp waiter_ptr wait_queue
request_ptr requests_pending }
request_ptr last

}

Figure 6: The left hand structure represents the execution environment of a processor. The right
hand structure shows the modelling of a subsystem in theSCOOPrun time.

Synchronization in the system is achieved through locking (argument passing in the
source program) and through results returned from separate calls. The termsynchronized
on is used to indicate this co-ordination between processors.

Our design satisfies the requirement that it be a system composed of subsystems,
containing a processor for each subsystem. Section3 showed that it was necessary for a
SCOOPsystem to be able to discover the subsystem any object was in. How then should
Oi (the set of objects in subsystemSi) be represented? One solution is to associate a set
of objects with each subsystem, but this option is bulky and unscalable. A better solution
is to create a mappingM : o→ Si that maps any object to the subsystem it resides in. The
most obvious way to achieve this is to add a pointer in each object. The pointer indicates
the subsystem that the object resides in. This allows a processor to decide at run time if a
routine call requires local sequential processing or the concurrent processing of a different
processor. Note that this test need only be performed for calls on separate entities, as non-
separate entities will always require local processing. (This can be determined at compile
time.) Remember that at run time a local object may become attached to a separate entity.
Therefore, a test is required by the false separate rule before invoking a routine on a
separate entity.

136 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 DESIGN AND IMPLEMENTATION

An issue in the construction of concurrent Java run-time systems is the extra memory
needed for concurrency. This is because any object may be locked independently and so
may require an associated mutex [14]. Many techniques have been developed to reduce
this cost, including lazy mutex creation, mutex compression, and lock reduction [1, 3, 14].
The cost in ourSCOOPsystem is slightly less (4 bytes for a pointer to a subsystem).
However, in large systems this is still a significant memory overhead.

Perhaps this cost could be reduced. First, consider expanded types. Values of expanded
types are passed by copy between subsystems and therefore can not be referenced from
another subsystem (values of expanded types are not reachable through separate refer-
ences). Thus a processor knows that all values of expanded types it ever encounters are
in its subsystem and require local processing. This in turn means that values of expanded
types do not require a mapping to the subsystem they reside in. Second, recognize that
only a subset of all types is ever synchronized on. Specifically, this set consists of all sepa-
rate types and all reference types passed between subsystems, through argument passing,
or as the result of a separate query. Perhaps SmallEiffel’s type inference algorithm [7]
could be used to discover all these types. The mapping only needs to be added to all ob-
jects of these types. Currently, only a basic approach to this idea is implemented and a
more sophisticated approach could remove more of this memory cost.

Calling Routines and Accessing Attributes

The SCOOPmodel includes the requirement that any processor be able to handle multi-
ple pending requests from other processors (see the subsection ‘Calling Routines’ above.
To satisfy this requirement, a queue of requests yet to be served (shown as the attribute
requests_pending in the processor structure of Figure6) is associated with each
processor. This models requests as a queue of functions and marshalled arguments.

In order to make a call on another processor, the calling processor must marshal the
arguments (pack them into a predefined data structure for the routine), add a reference to
the routine and then attach this package to the end of therequests_pending queue
of the appropriate processor. The use of a pointer (shown as thelast attribute in the
processor structure of Figure6) to the end of therequests_pending queue makes this
attachment an operation requiring constant time. The actions of both processors (caller
and callee) are shown in Figure7.

The concept of marshalling arguments and sending them off to another processor to
handle the routine is used in many systems, including Opus [15] and Eiffel// [5]. The
method of attaching a packaged routine/data element to a request list in this way is sim-
ilar to the approach taken in Eiffel//, except that the mechanism described here does not
require the co-operation of both processors. In fact, the callee may continue to process
other calls while new requests are attached to its list of pending requests.

Figure7 shows that after attaching a request to the list, a processor may continue its
own operations. This mechanism allows for concurrent execution by multiple processors.
An experiment presented in the subsection ‘Macro-benchmark’ shows that subsystems

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 137



A RUN-TIME SYSTEM FOR SCOOP

callee caller

and routine
marshal arguments

continue with
execution

...f( )

...

waiting...

executing in 
parallel

signal

execute routine

receive request
unpack routine

make call

...

a  ...  a1 n

a  ...  a1 n

f

Figure 7: Procedure calls in different subsystems may proceed concurrently because different pro-
cessors handle each call. This figure shows the caller and callee of a routine executing in parallel,
after the appropriate routine and arguments have been passed to the callee.

can execute efficiently in parallel.

Returning Values

Returning values from a function is achieved through an extension of the general routine
calling mechanism described above. TheSCOOP-wait-by-necessitymechanism (Defini-
tion 2.3) shows that the client must wait for the result of a separate function.

Our system uses a pointer to a known result location to allow for return values from
separate functions. The client of the function places the address of a memory location for
the result in the marshalled arguments structure. After making the separate call, the client
then waits for the completion of the function. After computing a result, the processor
serving the function places the result in the location indicated by the marshalled list; the
client is then signaled to indicate that the result is ready. At this time the processor that
served the function will return to a waiting state and the client continues to process. (There
can be no more requests to serve because of the separate call rule and because no requests
are issued after a function is called.)

Both simple assignment and passing function results as arguments are supported in
the system:

y := x.separate_function_call(...)
z.a_call(..., x.separate_function_call(...), ...)

This mechanism also integrates cleanly with SmallEiffel’s mechanism for handling dy-
namic dispatch [24].

138 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 DESIGN AND IMPLEMENTATION

Subsystem Creation

When !!x.creation_routine is executed (wherex is a separate entity), both a
new subsystem and a new processor must be created. This is achieved by allocating the
memory to representx and attaching tox ’s subsystem pointer a newly created subsystem.
The new subsystem is created by allocating the necessary data structures for the subsystem
and processor. A processor (POSIX thread) is started for the new subsystem; this processor
proceeds to execute the creation routine. Letting the new processor handle the creation
routine means that the execution of the creation routine may proceed concurrently with
the execution of the processor that called!!x.creation_routine . As the new object
is already attached tox , the creator of the new subsystem may begin to issue calls on the
newly created subsystem (throughx ) even before the creation routine has completed, after
gaining necessary locks.

Once Routines

The SmallEiffel compiler achieves a once semantics for single threaded programs by as-
sociating a flag with each once routine. The flag is set on the first execution of the routine.
Once functions also have a result associated with them; this result is set on the first exe-
cution of the function. If the flag is set, the caller of a once function will receive the result
previously computed.

This concept is extended by associating a key and thread-specific data with each once
function.8 The data associated with the key is a flag for a procedure, and a flag and result
for a function. A thread uses a once routine’s key to look up the flag and data before
executing the routine. If the flag is not set, it performs the only execution of the routine
and sets the flag. If a result is to be returned it is placed in the key-accessed data package.
The body of the routine is not executed on future calls to the routine.

Silva [22] developed a SmallEiffel concurrency system which uses a combination of
thread-specific data and linked lists to implement once functions. A thread would look
up its identifier from a key and then search through a linked list of (identifier/data/value)
elements for the once routine until the element found matched the identifier. This option
is not scalable as the number of threads increases, nor is it as fast as the method described
here.9

An issue to consider with the given implementation of once routines is the limited
number of thread-specific data keys that are available according to thePOSIX standard.
Currently, the lower bound on this value is 256 keys; this would limit a program to 255
once functions (one key is used for the processors in the system to store their execution

8Thread-specific data is aPOSIX threads mechanism that allows a thread to store a data element ac-
cessible by a key. Threads may store different data elements for each key. Any thread asking for the data
associated with a particular key, will be returned the data it associated with the key, regardless of the data
stored by other threads.

9The run-time cost of this implementation is at least as great as that of the the key lookup, plus locking
and traversing of a linked list.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 139



A RUN-TIME SYSTEM FOR SCOOP

environment). This is a considerable limit; for example, the compiler itself contains 220
once functions. An alternative is to create a hash function mapping a thread’s identifier to
some storage location for each key. Note that both the Linux and Solaris implementations
of POSIX threads allow for 1024 keys.

Resource Allocation

The important issue of resource allocation was presented in the subsection ‘Resource Al-
location’ in the previous section. Here we discuss those aspects of theSCOOPrun-time
system that satisfy the various properties defined for theSCOOPresource allocation prob-
lem. Our solution to the problem is based on the distributed queue approach of Rhee [21].
Rhee’s algorithm is not in itself sufficient to solve the problem at hand, so we present
a modification that does, based on a centralized ‘lock manager’ instead of the original
distributed managers.

A Lock Manager

Rhee’s algorithm to solve the dynamic resource allocation problem is based on the notion
of a distributed queue. Processors entering the entry section are placed on the queue of
each resource they require. When a processor reaches the front of all the queues it is in,
it has obtained exclusive access to all required resources. Upon entering the exit section,
a processor is removed from all queues, and processors behind it move forward in the
queue. Rhee proves that this approach satisfies liveness and safety properties similar to
those presented in the subsection ‘Mutual Exclusion’.

The algorithm considered here differs slightly. TheSCOOPsolution is based on a cen-
tralized ‘lock manager’ that allows the queues to be manipulated in a different way. Await
queueis associated with each subsystem. (The subsection ‘Resource Allocation’ in Sec-
tion 3 showed that locking means gaining exclusive access to subsystems.) A processor
attaches itself to a wait queue only if it can not acquire all required resources, otherwise it
acquires resources and continues to the critical section. A processor on wait queues gains
exclusive access to all resources once it is able to gain a lock on each resource that it
requires. We now present a more detailed description of the algorithm.

Upon encountering an entry section, a processor builds the set of resources it needs to
lock for this call and enters the lock manager. The lock manager is a module containing
routines used for acquiring and releasing locks. Only one processor is ever active in the
lock manager at any time; access to the lock manager is protected by a mutex.

There are two paths to resource acquisition, which we now describe in terms of proces-
sorPi entering an entry section with a set of resource requirements.Pi begins by gaining
exclusive access to the lock manager and obtaining a timestamp.Pi then attempts to gain
each lock in turn.

• If all resources are free (unlocked) thenPi locks all required resources.Pi then

140 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 DESIGN AND IMPLEMENTATION

unlocks and leaves the lock manager, and begins to execute the critical section.

• If any of the resources is already held by another processor,Pi places itself on the
wait queue for one of these subsystems. (Wait queues are ordered by timestamp.) It
unlocks all resources acquired in this locking sequence, unlocks the lock manager
and waits on its condition variable for a signal. When awoken, it repeats its attempt
to lock all the required resources. (Figure8 shows the lock queues.) This algorithm
differs from Rhee’s algorithm, where a processor is placed on all wait queues; this
modification is possible because of the shared memory abstraction.

If an object attempts to lock a subsystem on which it already has a lock, it gains a recursive
lock on the subsystem. Each processor records the depth of recursive locks it holds on
each subsystem.

x.feature_call( a,  b,  c  )  

qS qS qS1 2 3

Pm

Pk

Pi

Pl

Pk

Pj

Figure 8: Three wait queues (qS1
, qS2

, qS3
) for subsystemsS1, S2 andS3 respectively. Objects a, b

and c are in subsystemsS1, S2 andS3 respectively. The processor executing the call was able to
gain a lock onS1 but notS2 so it removes the lock onS1 and places itself on the wait queue forS2.

When unlocking resources,Pi performs the following actions:

• For each resource to be unlocked,Pi unlocks the resource and, if the object is to
be released (zero locking depth), builds an ordered list of all processors that have
been waiting on these objects.Pi signals the condition variable associated with the
first processor and then waits on its own condition variable. The processor thus
woken again attempts to acquire all resources (its actions are summarized by the
locking protocol above); whichever path it follows (gaining locks or waiting again),
it signals the next processor on the ordered list. This process continues until the last
processor on the list is reached. This processor signalsPi , which wakes up, unlocks
the lock manager, and returns to its normal execution. After the unlocking sequence
other processors may enter the lock manager.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 141



A RUN-TIME SYSTEM FOR SCOOP

Abstracting locking in terms of fast and slow methods of lock acquisition, where the
slow method requires communication between threads on wait queues, is similar to the
approach described by Agesen [1]. The list built by the unlocking processor is called
the HANDOFF-list and the process of signalling each processor in turn is called the
HANDOFF-protocol. Each processor woken during the HANDOFF-protocol has exclu-
sive access to the lock manager despite not currently owning the lock manager mutex.
Thus there is always only one thread of execution in the lock manager. This means that
actions on the wait queues are implicitly serialized.

The order of processors on the wait queues never explicitly changes (processors don’t
get a new time stamp while on the wait queues). However, a later processor may overtake
an earlier one if it can gain all its resources while the earlier processor is waiting on some
other resource. Some resource allocation algorithms do not allow such overtaking, but it
is required in this case as the earlier process may be waiting on a lock held by the later one
(because of the nested locking), so deadlock would occur if overtaking were not allowed.

The pseudo code algorithms for the entry and exit sections are given in Figures9
and 10. Multiple instructions written on one line, separated by a dash (—), indicate a
group of instructions executed atomically.

lock_resources (S)
/* S is the set of resources to lock */

lock(LockManager)
get timestamp
i := 0
while i < |S| do

i := i +1
trylock(si)
if could not lock si

add self to si wait queue
for j:= 1 to i do unlock sj end
unlock(LockManager) — signal HANDOFF — wait
i := 0

end
end
signal HANDOFF
if this subsystem still holds a lock on LockManager

unlock(LockManager)
end

Figure 9: The entry section of the resource allocation algorithm for the SCOOP run-time system.

142 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 DESIGN AND IMPLEMENTATION

unlock_resources (S)
/* S is the set of resources to unlock */

lock(LockManager)
foreach si ∈ S

unlock(si)
if no recursive lock is held on si

add si wait list to HANDOFF-list
end

end
signal HANDOFF — wait
unlock(LockManager)

Figure 10: The exit section of the resource allocation algorithm for the SCOOP run-time system.

Wait Conditions

The entry protocol was not fully described above. Part of the entry protocol involves a pro-
cessor (possibly) waiting on some conditions on the separate objects before locking them.
This section describes the aspect of the entry protocol that deals with wait conditions.

Before checking the wait conditions of some separate object, a processor must first
lock the subsystem associated with that object. There are several reasons for this. First,
it is required before the function can be called. Second, if a lock were not obtained, this
would introduce a race condition – checking the conditions and then obtaining a lock
would allow some time period where another processor could alter the value of one of the
conditions. Third, any one wait condition may contain multiple separate objects and each
of these must be locked.

The process for checking wait conditions is an extension of the locking mechanism
described above. This extension must fit in easily with the normal locking mechanism, as
it may be required in some situations and not others.

• A processor locks all resources (as normal) and then checks each wait condition in
turn. If any of the wait conditions are not satisfied, it releases the locks obtained
and places itself on wait queues as normal. Other processors that later obtain the
resources may now have the ability to change the condition and signal the waiting
processor.

When waiting on a wait condition for a recursive lock, the processor must release all
recursive locks and regain them when the conditions are satisfied. If it did not release re-
cursive locks, no other processor could obtain the lock and change the conditions, leading
to deadlock.

This method allows a processor waiting on a condition to wait on its condition variable
(in a wait queue) until some other processor takes the lock, changes the condition, and
then unlocks the resource.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 143



A RUN-TIME SYSTEM FOR SCOOP

When waiting for conditions, a processor may have to be placed on multiple queues.
Suppose that the wait condition was

x.some_value = y.some_value

wherex andy are separate objects on different subsystems. The processor wanting to
satisfy this condition would need to wait on bothx and y , otherwise it could miss a
change in one that satisfied the condition.

The algorithms for wait conditions are shown in Figures11and12.

wait_resources (S)
/* S is the set of resources to wait on */

lock(LockManager)
foreach si ∈ S

release all recursive locks for si
add si wait list to HANDOFF-list

end
signal HANDOFF — wait
unlock(LockManager) — wait
lock_resources(S) /* regain locks */
foreach si ∈ S

regain all recursive locks for si
end

Figure 11: The section of code in the lock manager that handles waiting on subsystems.

Exiting the System

A system’s exit condition was not defined in OOSC. We have decided that the system will
exit when all processors enter a dormant state. Of course, if all processors are dormant,
then there is no way to detect this dormant state. Therefore before entering a dormant
state each processor checks to see if all others are waiting, and if so, exits the system.

The model used in this project allows the initial thread of the system to enter a waiting
state and lets other processors call actions on it after it becomes dormant. In this model the
start system may have requests called on it, after passing a reference to one of its objects
to other subsystems. This model conforms with general Eiffel principles.

Summary

This section presented the architecture of theSCOOPsystem we have constructed. This
description does not constitute a design of all elements of the system, only a description of

144 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



5 BENCHMARKS

check all correctness conditions
if any fail, raise an exception in the caller

lock_resources(separate objects)
repeat

foreach wait condition
check the condition
if the condition is not met

wait_resources(separate objects)
break /* back to the outer loop */

end
end

until all wait conditions satisfied

/* continue with routine */

Figure 12: The code compiled into each require section (precondition) of a routine if it contains
wait conditions. Note that the normal ensure code for correctness conditions is maintained.

the major architectural features. Some of the simplicity and the elegance of the approach
may not be apparent in this description. Note that the amount of code introduced into the
system was minimal. No extra code is introduced for objects that are never shared be-
tween subsystems, nor is any code introduced for routines and features not used between
subsystems. The amount of code introduced for eachSCOOPcall is only 9 (C code) lines
plus one instruction for each argument to the call. Separate once routines introduce less
code. The locking and thread management code (included as a C header file) constitutes
the bulk of the new code. Extra memory requirements are limited to the bookkeeping for
each processor, and one pointer for some objects.

5 BENCHMARKS

This section is concerned with the process of carefully benchmarking and evaluating the
modified run-time system. We present micro-benchmarks showing the performance of
individual aspects of the system, and the results of experiments used to investigate and
enhance the system. A macro-benchmark of a ‘real’ program is used to assess overall
efficiency. Compile-time cost is not greatly affected by our modifications and therefore
compile times are not shown. The execution time of an action is referred to as thecostof
that action.

The significant differences in the implementations of Java and other Eiffel run-time
systems (the details of which are often unpublished) means that providing meaningful
comparisons between different run-time systems (in different languages) is a difficult task.
The SPECJVM benchmarks [23] were introduced to provide a standard set of benchmarks

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 145



A RUN-TIME SYSTEM FOR SCOOP

through which the performance of Java run-time systems may be evaluated. There exists
no such option for Eiffel. Also, the marked difference in the workings ofSCOOPand
many other object-oriented concurrency mechanisms would make comparisons difficult.
For these reasons, this project aimed to confine itself to benchmark accurately the perfor-
mance of theSCOOPsystem, and not to compare results between systems. These argu-
ments and benchmarking strategies are in line with those presented in the literature [20].

Three benchmark machines were used. The inclusion of two symmetric multiprocess-
ing (SMP) machines has allowed the evaluation of the mechanism in the presence of real
parallelism, as well as the simulated parallelism of single CPU machines. The benchmark
machines are listed in Table1. These machines are all representative of the platforms
targeted by the SmallEiffel compiler and thus also by theSCOOPcompiler.

label CPUs CPU and speed memory OS
(MHz) (MB)

A 1 600 (AMD-k7) 256 Linux
B 2 350 (Pentium II) 128 Linux
C 4 256 (UltraSPARC-II) 2048 Solaris

Table 1: The three computers used in the benchmarks of this section. Each machine will be referred
to by the label given here.

Note thatSCOOPis not aimed at high-performance parallel machines or for use in fine-
grained parallel programming. It is, however, important to investigate the performance
aspects of the system to ensure that the cost of concurrency does not outweigh its benefits,
and to identify areas for improvement.

Micro-benchmarks

Our discussion of benchmarking begins with a number of micro-benchmarks of individ-
ual aspects of the run-time system. The aim in these benchmarks is to investigate the
relationships and timings of individual elements. As a comparison between machines is
not important for this discussion, these benchmarks show results only for machineA.
Though the individual results differ on each machine, they show comparable trends.

This investigation can be used to identify areas of future work and bottlenecks in the
system. An investigation highlighting aspects of the system is consistent with benchmarks
performed for other concurrency mechanisms [1, 12, 20]. Areas of interest inSCOOPare:
the locking algorithm, the creation of new subsystems and processors, the signalling time
between threads, and the cost (for both caller and callee) of calling concurrent routines.

146 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



5 BENCHMARKS

Subsystem creation and requests

Timings were obtained using the high-resolution chip timer. Some benchmark code was
inserted by the compiler (after modifications for benchmarking) and other code was in-
serted by hand to ensure accuracy. The benchmark programs are a number of Eiffel pro-
grams specifically designed to test the individual aspects being timed. A suite was con-
structed that ran each benchmark a number of times and recorded the best result.

benchmark time (ms)

subsystem creation 57.40
request append 0.67
total signal 3.08
collect request 0.80

Table 2: Benchmark times for various aspects of theSCOOPsystem.

The first row in Table2 shows the cost of subsystem creation. This involves creating
a POSIX thread and allocating the memory required to represent the subsystem and pro-
cessor (see Figure6). The setup needed to create a new processor accounts for a large
percentage of the time. Also, the system schedules the new thread to run immediately
after its construction. The time reported here accounts for the time to setup and create the
new processor, as well as for this processor to perform some of its own initialization, and,
finally, enter a waiting state. This cost includes context switching times.

The second, third, and fourth rows of Table2 measure part of the cost of calling a
routine in another subsystem. Row two shows the time taken for a processor to append a
new request to another processor’s request queue. Row three shows the total time taken
to attach a new request and signal the associated processor. The time taken to attach a
new request is constant and does not depend on the length of the request queue. Row four
shows the time taken for a processor, after finishing a routine, to check the request queue
and start executing the next routine in the queue.

Locking

Mutual exclusion (locking) is obviously a central part of the system. The locking proto-
col provides the entry point through which concurrent routines are accessed. Figure13
shows the cost of the locking algorithm as the time taken to lock and unlock a set of
uncontested objects. The unlock time does not include the time taken to perform the
HANDOFF-protocol, which depends on the number of waiting objects and their resource
requirements.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 147



A RUN-TIME SYSTEM FOR SCOOP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

1400

1600

1800

lock time

unlock time

number of locks

tim
e 

(n
s)

Figure 13: The time required to lock and unlock a set of uncontested locks (machine A).

Investigating Enhancements

Calling routines in different subsystems is one of the major concurrency features of
SCOOP, which integrates inter-process communication (IPC) and feature access. Times
are now presented to indicate the cost of calling a routine across a subsystem boundary (a
concurrent routine). The benchmarks break down individual elements of the algorithm.

The separation provided by the calling mechanism means that the client of the call
must also marshal the arguments and the routine and attach this structure to the request
list of the client. Figure14demonstrates that the cost of marshalling arguments increases
as the size of the data increases.

We now discuss the results of an experiment conducted into the reduction of this
cost. The dominant cost of calling a separate routine is in allocating the necessary data
structures (shown as themalloc line in Figure14). A way to reduce this cost is to cache
the structures and then reclaim them from the cache on later calls.

Figure15 presents the results of an experiment using a caching mechanism to reduce
the cost of calling routines across subsystems. The bar labelledpack timesindicates the
original pack time from Figure14. This graph represents the average calling cost (for size
8–72 bytes). The average is presented here, as the cost of calling concurrent routines is
not dominated by the size of the argument list. In fact, it has little weight in the total cost.

The bar labelledglobal cacheis the result of an experiment to store the structures in
a global cache accessible to all threads. Before marshalling arguments, a thread attempts
to gain a pre-existing structure from the cache, and on completion of the call, the callee
places the used structure back in the cache. It is expected that by using such an approach,

148 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



5 BENCHMARKS

1000

1100

1200

1300

1400

1500

1600

1700

0 10 20 30 40 50 60 70 80

tim
e 

(n
s)

size (bytes)

pack times
malloc

Figure 14: Time to marshal arguments for a call. It was found that this cost is dominated by the
cost of allocating the data structures.

the cost of themalloc could be avoided in most cases. The results show that this repre-
sents a significant improvement, reducing the pack cost to under half the original cost.

A global cache is, however, a structure shared by all threads, and thus exclusive access
to it is required; the cache is protected by a mutex. This makes the cache the subject of
contention if two or more threads attempt to access it simultaneously. The bar labelled
global cache contentionshows that the time required to access the global cache increased
under contention. In this experiment, four threads make repeated attempts to access the
cache and pack data structures. The increase in time here is less than might be expected,
but can be attributed to the fact that each thread holds the mutex for a very short period of
time compared to the total call cost. It is not possible to conclude what level of contention
would exist in a real program.

The final experiment in Figure15 shows a best possible performance if each thread
maintained its own cache. In this experiment each thread held a cache accessible through
a thread-specific data key. As this cache does not require a mutex and is not the subject of
contention, this cost would remain constant. It is unclear, however, if such an option could
be supported properly in the system (unlike the global cache) and this result is provided
for comparison only.

Although providing a cache for argument structures gives a significant performance
increase, there are issues to be considered with such an option. The major issue is memory
management. If these caches were to become large, they could waste memory better used
for objects. A simple solution may be to limit the size of each cache. Another option may
be for a garbage collector to reduce the size of these caches on garbage collection runs.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 149



A RUN-TIME SYSTEM FOR SCOOP

pack times global cache
(contention)

global cache thread cache
0

200

400

600

800

1000

1200

1400

1600
1461

860

599

302

T
im

e
(n

s)

Figure 15: The results of an experiment to reduce the cost of calling routines inSCOOP. This graph
presents the time taken to marshal a set of arguments under the different methods. The method of
caching structures for marshalled arguments improves performance significantly.

Macro-benchmark

We now present a benchmark that shows performance of the run-time system as a whole.
This benchmark demonstrates that for certain styles of program, the system can execute
efficiently in parallel.

A program was constructed using Knuth’s method to estimate the number of Eulerian
cycles in a completely connected graph. The algorithm works by constructing a graph
and running a number of trials to produce an estimate; these trials can be run on multiple
threads concurrently. The algorithm suits theSCOOPmodel as there is no shared data
between threads and the communication needs of threads are quite low.

SmallEiffel has three compilation modes:

• Normal mode compilation, which includes all require and ensure code checks (pre-
and postconditions), as well as run-time type checking and bound checking on ar-
rays;

• No_check mode, which removes assertion checking from the compiled code; and

• Boost mode, which removes all assertion checking and run-time type checking from
compiled code. Boost mode also performs a number of optimizations, including the
removal of SmallEiffel’s run-time stack. The run-time stack records local variables
and the original values of parameters passed to functions, partly for producing a
stack trace of programs that violate assertions.

Figures16–19 present the performance of the system as the number of threads in-
creases. Each of these benchmarks was run on lightly loaded-machines and the size of the

150 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



5 BENCHMARKS

problem was held constant (9 node graph with 10000 trials). Performance results for the
three SmallEiffel compilation modes are shown.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

tim
e 

(s
)

number of threads

-no_check
-boost

Figure 16: MachineB, a two-CPU Linux machine, shows a performance increase (for no_check
and boost modes) until the point where no extra real parallelism can be gained.

0

5

10

15

20

25

0 10 20 30 40 50 60 70

tim
e 

(s
)

number of threads

-no_check
-boost

Figure 17: Times for no_check and boost modes on a four-CPU machine (machineC) decrease
until the machine’s CPUs are saturated with threads.

These graphs demonstrate that for an application that involves low communication,
the system can produce impressive performance increases. For the two SMP machines
(Figures16and17) in the optimized modes, performance increased for each new proces-
sor that was used for the problem. This performance levelled off once no new parallelism
could be gained from multiple CPUs.

Figures18 and19 show an interesting result. For normal mode, all three benchmark
machines show performance improvements even after the machine’s CPUs have been

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 151



A RUN-TIME SYSTEM FOR SCOOP

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

tim
e 

(s
)

number of threads

normal

Figure 18: Results for machineC show that performance continues to increase after the machine’s
CPUs are saturated with threads.

saturated with threads. A good explanation for this has not been determined. It is, however,
conjectured that this result could be the combination of two effects. First, a number of the
overheads present in the unoptimized SmallEiffel run-time system could be being masked
by the effects of multi-threading. Second, the performance increase could be the result of
scheduling. It is possible that as the number of threads increases, there is an increase in the
probability that a thread ready to perform some useful unit of computation is scheduled.

Figure20 presents a finer-grained benchmark. This benchmark demonstrates that as
the size of computation decreases in comparison to the amount of communication re-
quired between threads, there is a performance penalty associated with saturating the
machine with threads. This example shows a small increase in communication overhead
as the number of threads increases. A program that requires a greater amount of thread
communication (and thus synchronization) would have a much greater overhead.

6 CONCLUSIONS AND FUTURE WORK

In the preceding sections we presented our initial implementation ofSCOOP. In this sec-
tion we indicate what remains to be considered and draw some conclusions.

Future Work

The semantics of Eiffel’s exception mechanism in a concurrent context is not discussed in
OOSC and needs careful thought. Consider a case where processing had continued well
beyond the point of a separate call, perhaps even exiting the routine in which the call was
made. An asynchronous exception at this time could not possibly have the same semantics
as in the usual case.

152 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



6 CONCLUSIONS AND FUTURE WORK

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

tim
e 

(s
)

number of threads

normal
-no_check

-boost

Figure 19: Performance of the Knuth benchmark on machineA.

We discussed this with Bertrand Meyer. There seem to be two possible solutions.
Either, that an exception between subsystems is considered as catastrophic and causes
program termination, or that the object throwing the exception is flagged asdirty and any
later attempt to use this object results in program termination. We have adopted the first
approach, but note that further investigation may lead to a better way.

An extension proposed by Meyer is a library,CONCURRENCY, which includes mech-
anisms to steal locks, request an express service, and yield execution in favour of other
processors. OOSC does not provide a complete definition of theCONCURRENCYclass
and its features were not considered in depth during this project. It was considered best
to investigate the central elements of the mechanism thoroughly before expanding to en-
compass aspects auxiliary to the workings ofSCOOP.

Jalloul and Potter [11] have also discussed modifications of the SCOOP proposal, but
we have not considered them in this project.

The definition of Eiffel contains a Makefile-like minilanguage, known as ACE, for
specifying files to be compiled and compilation options. Meyer proposes a similar file
for specifying the concurrency requirements of aSCOOPsystem. This new file is the
Concurrency Control File (CCF). TheSCOOPsystem constructed in this work does not use
a CCF file. Instead, the concurrency requirements of a system are interpreted dynamically
(at run time). The CCF file does, however, provide some interesting options if a distributed
version ofSCOOPwere to be considered.

Concurrent garbage collection is a topic broad enough to warrant a project of its own
for proper investigation. Again, there is no definite semantics for garbage collection in
the context ofSCOOP. Caromel [5] notes that a semantics where subsystems may become
disconnected (unreachable) and still continue to process without garbage collection is a
practical option.

The lack of a garbage collector certainly does not render theSCOOPcompiler con-

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 153



A RUN-TIME SYSTEM FOR SCOOP

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

tim
e 

(n
s)

number of threads

-boost (machine C)

Figure 20: For fine-grained examples the system pays a performance penalty as the number of
threads increases. This benchmark was conducted on machineC.

structed for this project unusable. Indeed, the SmallEiffel compiler existed for three years
before a garbage collector was created for it. Many substantial programs including the
compiler itself were written using SmallEiffel during this time. However, making garbage
collection work must be considered an essential part of integrating fully theSCOOPmech-
anism into SmallEiffel.

We have also not considered alternative locking algorithms. Although this area is one
of the most mature areas of computer science, it has remained remarkably active in recent
years. New developments may provide further enhancements in the performance of the
run-time system. The lock manager we have used does not allow different threads to
lock non-intersecting sets of resources concurrently. An obvious extension of the run-
time system is to implement an existing (or new) algorithm that allows this greater degree
of concurrency. The trade-off between the concurrency allowed by such an algorithm and
the communication it would require indicates that it may not perform better than ours.

Recent research in Java systems has shown that a review of existing programs can
provide information useful in optimising a run-time system [3]. This indicates that revis-
iting the SCOOPrun-time system, once a stock of representativeSCOOPprograms have
been constructed and evaluated, could provide insights into the types of synchronisation,
routine calling and contention that occur in realSCOOPprograms.

And finally, the model we have presented brought some deficiencies in the definition
of SCOOPto the surface; some decisions relating to the semantics remain to be made.

Concluding Remarks

We have defined a model that describes theSCOOPmechanism, and used it to derive the
properties required of a run-time system. We have analysed all the requirements ofSCOOP

154 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



6 CONCLUSIONS AND FUTURE WORK

and identified the problems needing to be addressed by an implementation. Our imple-
mentation of such a system provides an important step for Eiffel and is an improvement
on previous efforts in this area. Our implementation usesPOSIX libraries and is portable
across a variety of operating systems.

We have presented benchmarks that demonstrate, in a way similar to the work of
Nebro [20], that run-time systems for concurrent object-oriented languages can be imple-
mented efficiently using standard threading models.

This is the first research project to considerSCOOPand the development of a com-
piler and run-time system needed to support it. As such, there is much more to explore. In
particular, the availability of an implementation provides an opportunity to develop appli-
cation programs that may help determine ifSCOOPhas the right level of expressiveness
and power.

WHERE TO GET IT

Our prototype implementation, based on SmallEiffel release−0.76 beta 3, is available at
http://cs.anu.edu.au/people/Richard.Walker/eiffel/scoop/ . We
welcome feedback.

ACKNOWLEDGEMENTS

We are grateful to Bertrand Meyer and Dominique Colnet for valuable discussions, ad-
vice, and encouragement. We also thank Malcolm Newey for his comments.

REFERENCES

[1] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippe, Y Ramakrishna, and
Derek White. An Efficient Meta-lock for Implementing Ubiquitous Synchroniza-
tion. In Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 207–222. ACM, 1999.

[2] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. An Operational Semantics
for the Eiffel// Language. Research Report 2732, Institut National de Recherche en
Informatique et en Automatique (INRIA), 1995.

[3] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin Locks:
Featherweight Synchronization for Java. InProceedings of the SIGPAN’98 Con-
ference on Programming Language Design and Implementation, pages 258–268.
ACM, June 1998.

[4] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice Hall
International Series in Computer Science. Prentice Hall, 1990.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 155

http://cs.anu.edu.au/people/Richard.Walker/eiffel/scoop/


A RUN-TIME SYSTEM FOR SCOOP

[5] Dennis Caromel. Towards a Method of Object-Oriented Concurrent Programming.
Communications of the ACM, 36(9):90—102, September 1993.

[6] K. Chandy and J. Misra. The Drinking Philosophers Problem.ACM Transactions
on Programming Languages and Systems, 6(4):632–646, October 1984.

[7] Suzanne Collin, Dominique Colnet, and Olivier Zendra. Type inference for late
binding. The SmallEiffel compiler. InProceedings of the Joint Modular Languages
Conference 1997 (JMLC’97), volume 1204 ofLecture Notes in Computer Science,
pages 67–81, 1997.

[8] Michael James Compton. SCOOP: An investigation of concurrency in Eiffel. Hon-
ours thesis, Department of Computer Science, The Australian National University,
December 2000. Available athttp://cs.anu.edu.au/people/Richard.
Walker/eiffel/scoop/ .

[9] Ian Foster and Stephen Taylor. A Compiler Approach to Scalable Concurrent-
Program Design.ACM Transactions on Programming Languages and Systems, 16
(3):577–604, May 1994.

[10] International Organization for Standardization. Information technology – Portable
Operating System Interface (POSIX®) – Part 1: System Application Program Inter-
face (API) [C Language].ISO.IEC 9945-1: 1996,ISO Geneva, 1996. Also available
asIEEE.ANSI Standard 1003.1.

[11] Ghinwa Jalloul and John Potter. Models for concurrent Eiffel. InProceedings of the
International Conference on Technology of Object-Oriented Languages and Sys-
tems, TOOLS 6, pages 183–191. Prentice Hall, 1991.

[12] Vijay Karamcheti and Andrew Chien. Concert – Efficient Runtime Support for Con-
current Object-Oriented Programming Languages on Stock Hardware. InProceed-
ings of Supercomputing’93, 1993.

[13] Patrick Keane and Mark Moir. A general resource allocation synchronization prob-
lem. InProceedings of the 21st International Conference on Distributed Computing
Systems (ICDCS-21), pages 557–564, April 2001.

[14] Andreas Krall and Mark Probst. Monitors and exceptions: how to implement Java
efficiently. Concurrency: Practice and Experience, 10(11–13):837–850, 1998. Pro-
ceedings of the ACM 1998 Workshop on Java for High-performance Network Com-
puting.

[15] Erwin Laure, Matthew Haines, Piyush Mehtrotra, and Hans Zima. On the Imple-
mentation of the Opus Coordination Language.Parallel Processing Letters, 9(2):
275–289, June 1999.

[16] Bertrand Meyer. Sequential and concurrent object-oriented programming. InPro-
ceedings ofTOOLS ’90, pages 17–28, Paris, June 1990. Angkor/SOL.

156 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

http://cs.anu.edu.au/people/Richard.Walker/eiffel/scoop/
http://cs.anu.edu.au/people/Richard.Walker/eiffel/scoop/


6 CONCLUSIONS AND FUTURE WORK

[17] Bertrand Meyer.Eiffel: the language. Object-Oriented Series. Prentice Hall, Hemel
Hempstead, Hertfordshire, 1992.

[18] Bertrand Meyer. Systematic concurrent object-oriented programming.Communica-
tions of theACM, 36(9):56–80, September 1993.

[19] Bertrand Meyer.Object-Oriented Software Construction. Prentice HallPTR, Upper
Saddle River, New Jersey, second edition, 1997.

[20] Antonio Nebro, Ernesto Pimentel, and José Troya. Evaluating a Multithreaded Run-
time System for Concurrent Object-Oriented Languages.Proceedings of Comput-
ing in Object-Oriented Parallel Environments, Second International Symposium, IS-
COPE 98 (Lecture Notes in Computer Science), 1505:167–174, December 1998.

[21] Injong Rhee. A modular algorithm for resource allocation.Distributed Computing,
11:157–168, 1998.

[22] Miguel Oliveira e Silva. Thread-safe SmallEiffel compiler. Available
at http://wwsympa.loria.fr/wwsympa/arc/smalleiffel/
2000-08/msg00034.html , August 2000. Last accessed 12 March 2002.

[23] Standard Performance Evaluation Corporation SPEC. SPEC JVM98 Benchmarks.
http://www.spec.org/ , 2000.

[24] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient dynamic dispatch
without virtual function tables. The SmallEiffel compiler.SIGPLAN Notices, 32
(10):125–141, October 1997. Proceedings of the 12th AnnualACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’97).

ABOUT THE AUTHORS

Michael Compton is a software engineer at CSIRO Mathematical and Information Sci-
ences in Canberra. E-mail:Michael.Compton@csiro.au .

Richard Walker is an associate lecturer in the Department of Computer Science, Faculty
of Engineering and Information Technology, at The Australian National University in
Canberra. E-mail:Richard.Walker@cs.anu.edu.au .

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 157

http://wwsympa.loria.fr/wwsympa/arc/smalleiffel/2000-08/msg00034.html
http://wwsympa.loria.fr/wwsympa/arc/smalleiffel/2000-08/msg00034.html
http://www.spec.org/
mailto:Michael.Compton@csiro.au
mailto:Richard.Walker@cs.anu.edu.au

