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Design by Contract is a valuable design method for trusted software components.
Eiffel shows how to provide appropriate language support for it. However, no such
concepts currently exist in Java. Full integration of them into Java may help to
improve and guarantee the quality of Java classes. We briefly compare several ap-
proaches to extend Java in this way and present our model and a compiler that
translates extended Java code into JVM byte code. Our Java extension integrates
preconditions, postconditions, and invariants as in Eiffel while respecting the char-
acteristics of Java. The evaluation shows that Design by Contract can be added
efficiently to Java while keeping compatibility.

1 INTRODUCTION

Java has become the dominant language in the area of Internet computing and is
also very successful in other domains. Not only because of its strong type concept
Java seems to be quite appropriate for the development of high quality software
components. However, Java does not support some well-explored language features
highly important to software of guaranteed quality. One of them is genericity. In the
present paper we deal with another one, the missing support of Design by Contract.

Bertrand Meyer introduced Design by Contract [Mey92, Mey98] in Eiffel [Mey91]
as a powerful technique for reliable software. Its key elements are assertions. These
are boolean expressions that define correct program states at arbitrary locations in
the code. Simple assertions belong to individual statements. Assertions belonging
to interfaces are more important: Preconditions have to be satisfied on method in-
vocation, postconditions are checked after method execution, and invariants express
conditions for the consistency of data. These assertions in a type or class specify a
contract between its instances and their clients. According to the contract a server
promises to return results satisfying the postconditions if a client requests available
services and provides input data satisfying the preconditions. Invariants must be
satisfied before and after each service. Neither party to the contract (these are the
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clients and servers) shall be allowed to rely on something else than stated explicitly
in the contract. Some important goals of Design by Contract are

• reduced test effort by separating contract checks from regular application logic,

• saved debugging effort due to improved monitoring where failures occur close
to the faults,

• as well as improved up-to-date and unambiguous documentation of interfaces.

In an old version of the Java specification [Gos94], the last one James Gosling
wrote alone, assertions were part of it. Because of a deadline Gosling removed
assertions from the specification. Recently Sun added a simple assertion facility
into Java (JDK 1.4) using the new keyword assert. There is still no direct support
of preconditions, postconditions and invariants.

It is possible to simulate preconditions, postconditions, and invariants by us-
ing conventional programming techniques. For example, the code for postcondition
checking can simply be added to the end of a method. However, the goals of reduced
test effort and up-to-date documentation cannot be achieved because of missing sep-
aration of contract checks from regular application logic. We need special language
support to meet these goals.

The rest of this paper is structured as follows. In Sect. 2 we give a brief overview
of several approaches to extend Java with assertions. In Sect. 3 we present our own
proposal to extend Java with preconditions, postconditions, and invariants. Next, in
Sect. 4 we discuss some implementation details of the proposed extensions. Finally,
in Sect. 5 and Sect. 6 we show performance results and draw our conclusions.

2 APPROACHES TO DESIGN BY CONTRACT IN JAVA

Most proposals use preprocessing techniques instead of a full language integration.
We discuss some of them.

Jass

Jass [Ber99] supports different kinds of assertions like pre- and postconditions, class
invariants, loop invariants, and checks at arbitrary locations in the code. Expressions
in assertions must be purely declarative; no side effects such as assignment and
instance creation are allowed. The programmer can use old field values and method
results in postconditions. Fig. 1 shows an example of assertions in Jass. In the
postcondition, Old.a is the old value of the field a. If an old value is used, the
object is cloned at the beginning of the method. In the postcondition, the field
value is compared to its counterpart in the clone.
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public class A implements Cloneable {

protected int a;

public void addValue (int x) {

/** require x > 0; **/

a = a + x;

/** ensure Old.a > a; a > 0; **/

}

protected Object clone() { ... }

/** invariant a > 0; **/

}

Figure 1: Conditions in Jass

If the evaluation of an assertion invokes a method that declares another assertion,
the second one should not be evaluated. Jass partially implements this principle.
The preprocessor introduces copies without any assertion checks for methods called
by assertions in the same class. These copies are invoked within assertions. However,
the principle is violated if methods call methods from other classes.

Subclasses must not refine the conditions in parent classes. A programmer who
needs refinements has to implement the interface jass.runtime.Refinement used
as a signal to the preprocessor. Then, the preprocessor copies all assertions from the
parent class into the subclass. This approach has some disadvantages: Private vari-
ables are not allowed to occur in invariants because (copied) invariants in a subclass
cannot access them. Furthermore, invariants in base classes may not be checked in
overridden methods. No invariants are checked on exceptional termination.

Jass extends the Java exception model with the rescue- and retry-mechanism of
Eiffel. A new version of Jass supports trace assertions [Pla00]. The programmer
defines allowed sequences of method calls that are dynamically compared with the
real call trace.

iContract

iContract [Kra98] also uses a preprocessing technique: It copies the parent class
into the subclass. If the source code of the parent class is not available, the prepro-
cessor produces a special repository class. The syntax of iContract complies with
UML/OCL [WK99] (see Fig. 2). Invariants are not enforced for private methods
because they already were enforced upon invocation of the public method preced-
ing the private one. To automatically avoid non-terminating recursion, iContract
instruments check code such that it keeps track of the call chain at run time. This
mechanism is thread-safe. Invariants, preconditions, and postconditions can refer
only to non-private instance variables unless the class is final. If an expression expr
is of the type Cloneable or String, the value of expr@pre is a shallow copy of
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/**

* @pre o != null;

* @post list.size() == list.size()@pre + 1;

*/

void append(Vector list, Object o) { ... }

Figure 2: Pre- and postconditions (with old value) in iContract

expr ; otherwise expr@pre and expr are identical. Unlike Jass, iContract clones only
necessary object parts.

The features of JMSAssert [Ran00] are very similar to those of iContract. How-
ever, JMSAssert has better performance because it adds a library to the JVM so
that the virtual machine supports assertions directly.

jContractor

jContractor [KHB98] is a Java library and a design-pattern-based approach to sup-
port Design by Contract. The programmer adds the contract code to a class in the
form of methods as shown in Fig. 3.

class ClassName ... {

Object methodName(Object x, String key) {

/* method body */

}

protected boolean methodName_PreCondition(Object x, String key) {

/* Precondition of above method */

}

protected boolean methodName_PostCondition(Object x, String key) {

/* Postcondition of above method */

}

protected boolean className_ClassInvariant() {

/* Class invariant */

}

}

Figure 3: Conditions in jContractor

A pattern defines the signature of these methods. All methods use a special
naming convention and are protected. The class loader looks for these patterns and
rewrites the code of the loaded class. jContractor supports old values of object fields
in postconditions as in this example (OLD is a class with a static method value):

count == OLD.value(count) + 1;
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class IStack { contract IStack {

protected int values[], size; invariant size >= 0 "size < 0";

public void push(int i) {...} public void push (int i)

public int pop() {...} pre !full() "stack full";

public int top() {...} post top() == i;

public boolean full() {...} public int pop()

public boolean empty() {...} pre !empty() "stack empty";

} }

Figure 4: Stack class and contract file for Handshake

The class loader replaces all OLD.value(...) expressions by simple variable expres-
sions referring to the temporary variables used to record the method entry value of
the attribute.

Handshake

Handshake [DH98] employs a dynamically linked library and works by intercepting
JVM’s file accesses and instrumenting classes on the fly by using a mechanism called
binary component adaptation. Handshake allows a programmer to write external
contract specifications for Java classes and interfaces without changing the classes
themselves as shown in Fig. 4. Binary component adaptation has been developed
for on-the-fly modification of precompiled-Java components (class byte-codes) using
external specification code containing directives to alter the pre-compiled semantics.
A drawback of this approach is the necessity of external contract specifications in
a special syntax and the Handshake library as a non-Java system that has to be
ported to different platforms.

Handshake does not yet support old values in postconditions. The result value
is available as the special variable $result.

3 OUR LANGUAGE EXTENSIONS

Most proposals translate the source code into an instrumented source code. This
approach violates abstraction and modularity. Source-to-source translators like Jass
and iContract make debugging of the byte code very uncomfortable and prevent
separate compilation because the source code must be available to the compiler.
Method removal at load time as in jContractor may confuse the programmer. All
proposals except jContractor put assertions in special Java comments.

Our proposed extension adds new keywords to Java so that the programmer can
define class and method constraints as part of the code. We do not place pre- and
postconditions in comments because of possible side effects. The proposed syntax
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is upward compatible to Java. We make heavy use of the simple assertion facility
added to Java in JDK 1.4. We need not change the class loader or access the
source code of parent classes. Abstraction, modularity and separate compilation are
fully supported. The code can be translated to Java byte code in one step, making
debugging easier than precompiler-based approaches.

Syntax and Semantics

Three keywords are added to the syntax: @invariant, @require, and @ensure.
In each class or interface, a single class invariant can be defined. It starts with
@invariant and contains an arbitrary number of assertions (see Fig. 5). Invariants
are checked at the entry and at the normal or exceptional return from a non-private
method. However, invariants need not hold if constructors throw exceptions because
the exceptions’ reasons may prevent class initializations that comply with the invari-
ants. If an assertion in an invariant fails, the evaluation of the invariant ends and
an InvariantError is thrown. Invariants need not be enforced for private meth-
ods because they were already enforced for the exported method called prior to the
private one. In fact it is desirable to allow private methods to temporarily violate
class invariants.

class Account {

@invariant {...} // class invariant

public int getDeposit()

@require {...} //preconditions

{

... // method body

}

public int withdraw (int withdrawal)

@require {

assert (withdrawal >= 0);

... // preconditions

}

{

... // method body

}

@ensure {

... // postconditions

}

}

Figure 5: Example of class invariant, pre- and postconditions
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According to JDK 1.4 assertion checking in a class can be switched on or off
before loading the class. When assertions are switched off, the invariants, precondi-
tions, and postconditions in the class shall not be checked at all.

Preconditions are defined at the beginning of methods directly after formal pa-
rameter lists. They start with the keyword @require and contain assertions (see
Fig. 5). It is the duty of callers to satisfy preconditions at method entries. Some
preconditions of public methods shall be checked inside methods that throw excep-
tions like IllegalArgumentException and IllegalStateException to ensure that
necessary requirements are fulfilled even if assertions are disabled. If the @require

clause fails, a PreconditionError exceptionally terminates the method.

Postconditions are located directly after method bodies and start with @ensure.
The assertions are checked prior to method returns immediately before checking
class invariants. Failed assertions throw a PostconditionError exception. Post-
conditions are not checked for methods returning an exception.

Local variables defined in method bodies must not be used in the pre- and
postconditions. Thus, @require clauses are located before and @ensure clauses
after method bodies. Assertions in these clauses can refer to private fields of the
class. Eiffel prohibits access to private fields. We decided to allow these accesses for
practical reasons. For example, if we read a private variable instead of using a public
getter method, the semantics of the assertion remains unchanged when the getter
method is overridden. We may use this assertion to ensure that overridden getter
methods always return a value not larger than the value in the private variable.
Accessing private variables should be used with care because it may make it harder
to understand the conditions for method invocations.

If the value of a public field of an instance is changed, the invariant of that
instance can fail. A correct evaluation of the precondition is only guaranteed if
the invariant is satisfied. Therefore, invariants are checked before preconditions.
Postconditions are checked before invariants, but invariants are also evaluated in
the case of exceptional method termination. Failing invariant checks absorb failing
postcondition checks. Synchronized methods acquire their locks before checking
invariants and preconditions and release them after checking postconditions and
invariants (again).

In general, preconditions are checked on method entry, postconditions on normal
method return, and invariants on method entry as well as on normal and exceptional
method return. Table 1 summarizes these rules. Pre- and postconditions can be
defined for static methods. However, invariants are not checked in static methods
and static initializers because access to instance variables is not allowed in static
methods. So far we avoided to introduce special static invariants and regard them
as a possible future addition.
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non-private method private method constructor
entry yes no no

invariant regular exit yes no yes
exception yes no no

entry yes yes yes
precondition regular exit no no no

exception no no no
entry no no no

postcondition regular exit yes yes yes
exception no no no

Table 1: Rules for invariants, pre- and postcondition checking

Inheritance

In iContract and JMSAssert, the compiler implicitly refines pre- and postconditions
as well as invariants. In Jass, the programmer can use refinement, but he need not
do so.

An Eiffel programmer who redefines pre- or postconditions must add the new con-
ditions to the overridden methods’ conditions by using the keywords require else

and ensure then. The semantics equal those of or else and and then. Redef-
initions may weaken preconditions and strengthen postconditions. Assertions of
overridden methods are evaluated only if necessary. As pointed out by Findler and
Felleisen [FF01] combing assertions of supertypes and subtypes in this way may not
always reflect the programmer’s intention. We regard static checks to detect such
problems as important future additions to our work and do not deal with this topic
in the present paper.

In our proposal we can associate redefined methods with pre- and postcondi-
tions. They will be implicitly concatenated with the pre- and postconditions of the
overridden methods using non-commutative versions of or and and, respectively. As
in Eiffel, redefined methods retain the conditions of overridden methods at the ab-
sence of @require and @ensure clauses. In this frequent situation the programmer
need not write anything special. Pre- and postcondition checks first ensure that
the conditions of the invoked methods are satisfied. On failure (for preconditions)
or success (for postconditions) the conditions of the overridden methods have to be
evaluated. Pre- and postconditions of overridden methods do not get evaluated in
other cases.

Invariants are conjuncted across class extensions. Invariant checks ensure that
the invariant of the class itself, the invariants of all base classes, and the invariants
of all implemented interfaces are satisfied. For inner classes the invariants of the
enclosing classes (and their base classes and implemented interfaces) have to be sat-
isfied, too. Methods in classes not containing assertions or with disabled assertions
do not perform invariant checks. If these methods are not overridden in a subclass,

64 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 OUR LANGUAGE EXTENSIONS

then these methods do not perform invariant checks in the subclass even if the
subclass uses assertions. Static and private methods never override other methods.
Therefore, they cannot inherit constraints.

Old Values and Results

Postconditions can refer to the old object state (this is the state at the time of
method invocation) by using the special syntax @@(expr) and to the method’s return
value by @@(). For example,

@ensure { assert (@@(deposit) > deposit, "no deposit increase"); }

ensures that the value of the variable deposit was increased while executing the
method body. A more intuitive name like old instead of @@ cannot be used because
of legacy code in which old occurs as identifier.

To make @@ expressions more powerful, the argument of @@ can contain all kinds
of expressions, not just field accesses. Such expressions get evaluated immediately
after method invocation. In the example in Fig. 6, the first assertion ensures just
the identity of the old value of vector with that of the current value. The second
assertion compares the vectors for equality; however, only the current state of the
old value of vector is compared with the current state of the current value. To
compare the old state of the old value with the current state of the current value
we need the third assertion. The last assertion shows a comparison of a selected
field; in this case only a single value of type int is saved until the method execution
terminates.

private Vector vector;

...

assert @@(vector) == vector;

assert @@(vector).equals(vector);

assert @@(vector.clone()).equals(vector);

assert @@(vector.size()) < vector.size();

Figure 6: Examples for @@ expressions

An @@ expression is evaluated immediately after invariant and precondition
checking, and the value is stored in an inner object until it is used in the post-
condition. Hence, the side effects of @@ expressions are visible within the method
body although the expressions belong to the postcondition. Cascading @@ makes no
sense and causes compile-time errors.

Field declarations in the body of an interface are implicitly static and final.
Therefore, postconditions on old values of fields are meaningless and not supported.
Of course, the result value is accessible.
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In contrast to preconditions of methods, constructors cannot access object fields
in preconditions and use @@(expr) and @@() in postconditions because the fields are
not yet initialized. Although the base class constructor invocation in a constructor
must be the first statement in the Java source code, the constructor’s precondition
has to be checked before. Source-to-source translators cannot perform these checks
correctly.

4 TRANSLATION

The Kopi project is a Java software project of Decision Management Systems (DMS),
a small Austrian/American/French software company. It provides a framework for
developing database applications using Java, JDBC and SWING. Kopi contains a
set of tools like DIS (Java disassembler), KSM (Java assembler) and KJC (Kopi
Java Compiler). KJC compiles Java source code to JVM byte code. It is a Java
compiler written entirely in Java and available under the terms of the GNU Pub-
lic License. We extended KJC with support for genericity and Design by Con-
tract as described in Sect. 3 and [Lac01]. This compiler is available from DMS
(http://www.dms.at/kopi/).

Subsequently we describe how KJC translates preconditions, postconditions, and
invariants to JVM code. In a nutshell, the translation generates separate methods
for class invariants and @require and @ensure clauses. To minimize the possibility
of name clashes we use the $ character in every compiler-generated identifier; as
defined in the Java language specification §3.8 [GJSB98], this character shall be
used only in mechanically generated code.

Translation of Invariants and Preconditions

We translate the invariant of a class to a method protected void $invariant().
Each non-static exported method in the class invokes this method once at the entry
and once at the end, and each constructor does so only at the end. The assert

statements are translated to if statements that throw InvariantError.

The precondition of a method foo is compiled into a separate method foo$pre

of return type void. Modifiers of pre- and postcondition methods are the same as
those of the original methods except for abstract and access modifiers. Pre- and
postcondition methods cannot be abstract. They are private if the original methods
are private; otherwise they are protected. The formal parameters correspond to
those of foo, but they are all final to forbid changes of their values. There is
an extra final parameter of name $class with the class containing the method as
parameter type if the method is neither private nor static. This parameter avoids
overriding with pre- and postcondition methods of the same names in subclasses,
but causes these methods to be overloaded (because of different parameter types).
The $class parameter is also needed for assertion checks in interfaces (see below).

66 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

http://www.dms.at/kopi/


4 TRANSLATION

protected void $invariant() { if (!(getDeposit() > 0)) ... }

protected void getDeposit$pre (final Account $class) { ... }

public int getDeposit() {

if (!Account.$assertionsDisabled) // enabled/disabled assertions

if (!AssertionRuntime.tstandsetRunAssertion()) {

try {

this.$invariant(); // check invariant

this.getDeposit$pre(null); // check precondition

} finally {

AssertionRuntime.clrRunAssertion();

}

}

try {

... // method body

} finally {

if (!Account.$assertionsDisabled) // enabled/disabled assertions

if (!AssertionRuntime.tstandsetRunAssertion()) {

try {

this.$invariant(); // check invariant

} finally {

AssertionRuntime.clrRunAssertion();

}

}

}

}

Figure 7: Invariant and precondition checking in a method of class Account

As simple assertions in Java, the invariant and all pre- and postconditions in a
class can be disabled. The class loader sets the value of the static, private variable
$assertionsDisabled in each class to true if assertions are disabled, otherwise to
false. The example in Fig. 7 (see Fig. 5 for the source code) shows that all kinds
of assertions are checked only if this variable contains false.

Further assertion checks shall be switched off while checking an assertion. Oth-
erwise invariant checking would result in infinite recursion (see Fig. 7). To prevent
assertion checking within assertions we store in the special class AssertionRuntime
the sort of code (regular code or assertions) currently executed by each thread. This
simple database is consulted and updated before each assertion check.1

Preconditions and invariants are checked only if $assertionsDisabled is false
and tstandsetRunAssertion returns false for the current thread (see Fig. 7). As a

1It would be simpler and more efficient to add a corresponding flag to Thread. However, we
avoided that solution because Thread is part of the standard Java environment that we do not
want to change.
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side effect tstandsetRunAssertion sets a flag for the current running thread. Since
different threads are allowed to execute assertions at the same time, a separate flag
for each thread has to be reserved. After the assertions have been evaluated this
flag has to be cleared by clrRunAssertion. The last clearing of the flag occurs in
a finally block to guarantee the clearing even if exceptions were thrown.

Translation of Postconditions and @@ Expressions

References to old values and result values in postconditions make the translation
more complex. To avoid name clashes the method created for the postcondition
of a method foo gets name foo$post if foo returns a value and foo$V$post if
the return type is void. Postcondition methods always have the return type void.
Their formal parameter lists include a parameter $storage of the type of an inner
class that stores old values if @@(expr) expressions occur in the preconditions or
the preconditions of corresponding overridden methods. For non-private, non-static
methods there are $class parameters as in precondition methods. For methods
returning values there is a further parameter $result standing for the returned
value. We translate @@() expressions to accesses of $result. All parameters are
declared final.

It is not feasible to store old values in local variables because old values may
be needed even for methods overridden in a subclass; overriding methods have no
access to private variables. Hence we must use inner classes. The compiler generates
names of inner classes to store old values by adding successive numbers to $$Store.
Each @@(expr) expression introduces a new final variable of name $field (with
an appended successive number) in the class. The variable gets initialized with expr.

Fig. 8 shows an example of a postcondition method and an inner class storing
old values. The postcondition method cannot be invoked in the finally block be-
cause it shall not be executed on exceptional termination. The right place for the
postcondition check is the return statement.

Inheritance and Interface Implementations

In the presence of an overridden method a precondition check shall fail only if the
precondition of the invoked method fails and then the precondition of the overridden
method fails, too. Fig. 9 shows an example of a precondition method for an overrid-
ing method. A failing assertion causes the precondition of the overridden method to
be evaluated. If this precondition also fails, the first generated exception is updated
and thrown again.

As shown in Fig. 9, the translation of inheritance for postconditions is slightly
simpler. If any check of (partial) postconditions for overridden methods fails, the
whole postcondition check fails.

Methods inherit the Store$$ classes from overridden methods. If they need their
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protected class $$Store0 {

final int field$0 = Account.this.value;

}

protected void withdraw$post (final $$Store0 $storage,

final Account $class, final int $return, final int withdrawal) {

if (!($return > this.max_overdrawn))

throw new PostconditionError("Account.java: 22");

if (!($storage.field$0 < this.value))

throw new PostconditionError("Account.java: 23");

}

public int withdraw (int withdrawal) {

$$Store0 $storage = null;

if ... { // if assertions shall be checked

... // set mode; invariant and precondition checks

$storage = new $$Store0(); // store old values

... // reset mode

}

try {

... // method body

int $return = ...; // set value to be returned

if ... { // if assertions shall be checked

... // set mode

this.withdraw$post($storage, null, $return, withdrawal);

... // reset mode

}

return $return;

} finally {

... // invariant check if necessary

}

}

Figure 8: Example of a store class and postcondition method
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protected void withdraw$pre (final Account $class,

final int withdrawal) {

try {

... // require clause of current method

} catch (PreconditionError pe1) {

try {

super.deposit$pre(deposit);

} catch (PreconditionError pe2) {

pe1.setSuperPreconditionError(pe2);

throw pe1;

}

}

}

protected void withdraw$post (final Store$$0 $storage,

final Account $class,

final int $result,

final int withdrawal) {

... // ensure clause of current method

super.withdraw$post ($storage, null, $result, withdrawal);

}

Figure 9: Translation of a precondition and postcondition with inheritance

own such classes for old values, then the own class must extend the inherited one.
The interface of the postcondition methods in a class depends on the postcondition
methods in the base class. This dependence adds some complexity to the compiler
development because base classes must be translated before their subclasses.

With generic classes as in GJ [GW98] and in KJC [Lac01] it can happen that
a method overrides (indirectly) two or more methods. This property requires the
translation to be a little bit more sophisticated. Since Java does not (yet) support
genericity we do not deal with these topics in this paper.

If a class extends another class or implements interfaces, the generated invariant
method invokes the corresponding methods of the base class or interfaces as shown in
Fig. 10. We put methods generated for preconditions, postconditions and invariants
in an interface X into a new class of name X$$Assertions. The idea of introducing
classes with special names to store information about interfaces is used, for example,
in standard Java for beans [Ham97]. All methods in this class are static. We use
the parameter $class to refer to the corresponding instance of the interface. The
argument provided for this parameter must be different from null.

In the same way, pre- and postcondition methods must not only call the corre-
sponding methods of overridden methods, but also those of methods in interfaces
implemented by the class. Old values cannot occur in postconditions of methods in
interfaces. Hence, such postcondition methods need no parameter $storage.
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public class A extends B implements X, Y {

protected void $invariant() {

super.$invariant();

X$$Assertions.$invariant(this);

Y$$Assertions.$invariant(this);

...

}

}

Figure 10: Translation of invariants

Translation of Constructors

In essence the translation of pre- and postconditions in constructors resembles that
for ordinary methods. Major differences include the fact that invariants have to be
checked for private constructors, and invariants shall not be checked on exceptional
termination. Hence, invariant checks resemble postcondition checks in ordinary
methods without return values. Assertion checking is even simpler for constructors
because constructors in subclasses do not override constructors in base classes; they
just overload them.

As already mentioned, precondition checks shall be performed before invoking
constructors of base classes. In standard Java code the invocation of a base class
constructor must be the first action within a constructor. This restriction prevents
proper precondition checks. Fortunately, JVM byte code does not enforce this Java
rule so that a Java compiler can construct correct code for precondition checks.

In classes where no explicit constructor is defined, the Java compiler introduces
an empty default constructor without parameters. Default constructors must check
the invariant as each other constructor does.

5 PERFORMANCE RESULTS

To evaluate the overhead imposed by assertion checks we have completed several
classes with assertions. All measurements were performed on a Celeron 533 with
SUN JDK Version 1.4.0 Beta 2 running WindowsNT 4.0. Timing result values show
the averages of the times measured for repeated test runs without the fastest and
the slowest ten percent.

We have chosen a small application and some micro benchmarks which heavily
use pre- and postconditions and separately invariants. The first program evaluated
was the compiler-interpreter for Mini (a small subset of the Java language) written in
Java. The compiler generates code for a modified small subset of the Java Virtual
Machine. Every method of the lexical analyzer and the code generator contains
assertions. The whole program contains 21 assertions.
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Mini program original constrained code empty constraints
length [byte] code [ms] disabled [ms] enabled [ms] enabled [ms]

588 75 115 (+53%) 170 (+126%) 130 (+73%)
833 90 130 (+44%) 200 (+122%) 145 (+61%)

1470 110 150 (+36%) 270 (+145%) 190 (+72%)

Table 2: Mini compiler-interpreter without printing

We run the compiler with three different input data sets. The first column in the
table 2 shows the sizes of the three different Mini programs. The second column gives
run times for the original code without any assertions. In the next two columns we
present run times for the code with assertions, one column with disabled assertions
and the other one with enabled assertions. For binary compatibility every method
has a pre- and a postcondition method unless the pre- or postcondition is empty. To
separate the cost of the assertions from the cost of the assertion managing code, the
last column shows run times of the code containing preconditions, postconditions
and invariants, but these assertions are empty.

It can be seen that the overhead between the original program and the program
with disabled assertions is always about 40 ms, independent of the program length.
The relative overhead of assertion checking decreases with bigger input data.

The Mini compiler-interpreter has only static methods. So the results in table 2
reflect the overhead for pre- and postcondition checking, but not for class invariant
checking.

Next, the impact of assertions to the performance of a binary search tree which
is used for minimum and maximum search is evaluated. The performance depends
on the distribution of the elements. We use three different data sets. The first one
guarantees trees to be balanced, where the differences between the depths of the
left and right branches must not be larger than one. The second set uses a random
generator, and the last one inserts elements in ascending order. The postcondition of
the insert method guarantees that (1) if the minimum of the tree is greater than the
new element, then the new minimum returned by getMin() equals the new element,
and (2) if the maximum is smaller than the new element, then the new maximum
return by getMax() is equal to the new value.

insert original constrained code empty constr.
strategy [ms] disabled [ms] enabled [ms] enabled [ms]

perfect 26 26 (+ 0%) 200 (+ 669%) 93 (+ 257%)
random 30 30 (+ 0%) 250 (+ 733%) 120 (+ 300%)

ascending 90 110 (+22%) 125020 (+138811%) 2249 (+2398%)

Table 3: Binary search tree
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Table 3 shows that if the elements are inserted in ascending order, the constructed
tree is in fact a linear list where the element representing the minimum is at the
root and the maximum at the end. The method getMax() is called twice in the
postcondition, once to get the maximum of the old tree and once to get the maximum
of the tree after inserting the new element. This explains the huge overhead.

The evaluation of a balanced binary tree is the content of the next test (see table
4). The invariant ensures that the tree always is balanced.

elements original constrained code empty constraints
inserted code [ms] disabled [ms] enabled [ms] enabled [ms]

500 136 136 (+0%) 460 (+238%) 254 (+87%)
1000 476 476 (+0%) 1544 (+224%) 749 (+57%)
2000 2217 2221 (+1%) 6232 (+181%) 2827 (+28%)

Table 4: Balanced binary tree

Since the invariant is checked twice, this overhead can be expected.

For the next test assertions were added to the implementation of a stack class
from GNU classpath. Every used method of the stack contains one precondition
and two postconditions. Elements were added to the stack and then removed again
until the stack was empty.

elements original constrained code empty constraints
inserted code [ms] disabled [ms] enabled [ms] enabled [ms]

50000 60 60 (+ 0%) 1517 (+2428%) 1342 (+2136%)
100000 137 152 (+12%) 3046 (+2140%) 2688 (+1876%)
500000 580 654 (+13%) 14988 (+2484%) 13200 (+2176%)

Table 5: Stack

The methods in the stack class are very small. The results in table 5 show that
the overhead of assertion checks is quite large. Especially the results for empty
preconditions, postconditions and invariants in the last column show that book
keeping for assertions takes much more time than the evaluation of the assertions
themselves. A major reason for the overhead is frequently repeated tests whether
the current execution of a method belongs to an assertion check or not, as explained
in Sect. 4.

These tests are performed by methods of the class AssertionRuntime. To verify
their overhead table 6 shows results for the stack example with empty implementa-
tions of the methods of AssertionsRuntime.

The complex implementation of AssertionRuntime could be replaced with a
boolean flag changing the class java.lang.Thread. Table 6 makes obvious that
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elements original constrained code empty constraints
inserted code [ms] disabled [ms] enabled [ms] enabled [ms]

50000 50 56 (+12%) 130 (+160%) 73 (+46%)
100000 112 127 (+14%) 254 (+126%) 160 (+42%)
500000 578 654 (+13%) 1254 (+116%) 819 (+42%)

Table 6: Stack without assertion management code

such a change of the standard would be very useful to get good performance. Table 7
compares the run times of our unmodified KJC system with that of our system with
a modified class java.lang.Thread. The table also shows results for some of the
other systems discussed in Sect. 2.

elements measured times with constraints enabled [ms]
inserted unmodified KJC modified KJC jContractor iContract Jass

5000 — 3) — 3) 19192 82 756
10000 300 71 — 1) 108 2990
50000 1517 419 — 1) 534 225346

100000 3046 825 — 1) 1076 — 2)

500000 14988 4109 — 1) 5428 — 2)

1) throws the exception java.lang.OutOfMemory
2) not measured (too long because Jass uses cloning)
3) not measured

Table 7: Comparison of systems using stack

The difference between a program without assertions and a program with dis-
abled assertions is negligible except if the program is very small.

6 FURTHER WORK AND CONCLUSIONS

We added support for Design by Contract to Java. The syntax of our language
extension is upward compatible to the Java language specification. Our approach
has been implemented as part of the Kopi Java compiler. All class libraries remain
unchanged, each class can be compiled separately, and the generated byte code can
be executed on any JVM compatible with JDK 1.4. A performance evaluation shows
the good performance of our implementation compared to others.

Our approach allows the use of private variables in assertions. Implementing
assertions in a compiler gives the advantage of full debugging support and correct
positioning of the assertion code which is impossible for precompilers. Our compiler
is available at (http://www.dms.at/kopi/).
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6 FURTHER WORK AND CONCLUSIONS

Future work may be the introduction of invariants for static methods. The
performance can be improved if JVM implementations are aware of assertions and
do further optimizations to remove redundant evaluations.
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