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Design by Contract Using Meta-
Assertions 

Isabel Nunes, University of Lisbon, Portugal 

Abstract 
Contract writing for methods in classes that are clients of other classes can bring 
undesirable effects, like the increasing in class coupling and encapsulation decreasing. 
We propose a pattern to the design of class contracts that helps producing contracts 
that preserve low class coupling and data encapsulation. The expressive power of 
existing assertion languages is insufficient, however, to write these contracts. In order to 
fill this lack we propose meta-assertions, and we define rules for a grammatically and 
semantically sound expansion of meta-assertions in order to be able to monitor 
contracts at run-time using already existing tools. 

1 INTRODUCTION 

The use of contracts to establish the rights and obligations of clients and suppliers is 
becoming widely accepted in the construction of reliable object-oriented software 
systems.  

In what concerns the construction of classes, the design by contract programming 
discipline [Meyer97] stresses the need to precisely define the behaviour of modules 
through claims and responsibilities – the contracts. The specification of contracts – pre 
and post-conditions – for each method of a type is possible in several existing assertion 
languages – iContract [iContract], COLD-1 [Jonkers91], Jass [Bartezko01], Eiffel 
[Meyer97], ContractJava [Findler01], Larch family [Guttag85], JML [Leavens00] among 
them. Some of these – Jass, iContract, Eiffel – as well as others, allow the monitoring of 
contracts at runtime. 

Specifying contracts is very important to the correct reuse of software. Clients must 
know the rules of the business. Thus, methods must make their pre and post-conditions 
public knowledge. Moreover, contract specifications are important insofar as they can be 
used to verify program properties [Havelund00, Jacobs01, Van der Berg01]. 
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Testing contract assertions at run-time is also important because it is a way to ensure 
that methods are executed only if they are given the proper conditions, and to ensure that 
only correct implementations of specifications are executed. 

The several languages of assertions, and monitoring code generation tools that exist 
allow the specification and, eventually, the runtime checking of very powerful and 
elegant contracts. This is definitely so for classes as simple as Stack, Point or Account. 
However, the task of specifying contracts for methods in classes that are clients of these 
simple classes, is harder and can bring undesirable effects like the increasing in class 
coupling and encapsulation decreasing. The benefits we gain from writing monitorable 
assertions that do not suffer from these defects can turn to be considered as not enough 
rewarding when compared with the effort we must put in that task. 

We propose a general responsibility assignment pattern for design by contract that is 
to be used in the writing of assertions while avoiding the above mentioned undesirable 
effects. This way of doing design by contract demands for additional expressive power 
from assertion languages. We also propose a general extension for assertion languages 
while maintaining the semantics of simple assertions and reusing monitoring code 
generation tools that eventually exist for those languages. 

The paper consists of five sections. In the next section we show, through the use of 
an example, how contracts should and should not be written if one aims at low class 
coupling and encapsulation of object components. The approaches that existing assertion 
languages allow to follow in the specification of this kind of assertions are not satisfying 
in what respects several criteria. Section 3 presents our approach – meta-assertions – in 
an informal way, stressing its benefits from several points of view. It also gives the 
formal syntax of meta-assertions and the rules that define its operational semantics. 
Section 4 presents the rules for the expansion of meta-assertions into simple assertions 
abstracting away the details of the assertion language that serves as the basis for meta-
assertions. Section 5 presents the conclusions and further work. 

2 MOTIVATION 

Let us take a first example to show the reasons why we are compelled to write assertions 
in a given way, and the reasons why it is not the best way to write them. This example 
deals with points, polygons (whose vertices are points) and drawings (which are 
composed of polygons). Each one of these types defines an operation of movement by 
given distances both horizontally (dh) and vertically (dv).  

The semantics of these operations are given, in a rigorous way, through axioms in 
the abstract data types (ADTs) that define types Point, Polygon and Drawing. 
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Fig. 1: Polygon is a client of Point and a supplier for Drawing 

In order to build classes as correct implementations of the corresponding ADTs we have 
to implement each method of the classes in such a way that the axioms are true for each 
and every possible instance of the class. In what concerns the move operations, the 
relevant parts of these ADTs can be given by: 

ADT Point 

Operations 

 x: Point → num y: Point → num move: Point num num →Point 

Axioms (forall p:Point, dh,dv:num) 

 x(move(p,dh,dv)) = x(p) + dh y(move(p,dh,dv)) = y(p) + dv 

 

ADT Polygon 

Operations 

 new: Point Point Point→Polygon new: Polygon Point→Polygon 

 move: Polygon num num→Polygon vertex: Polygon num→Point 

 vertices: Polygon→num 

Axioms (forall p:Polygon; dh,dv,i:num; v,v1,v2,v3:Point) 

 vertex(move(p,dh,dv),i) = move(vertex(p,i),dh,dv) 

 vertices(new(v1,v2,v3))=3 vertices(new(p,v))=vertices(p)+1 

 vertex(new(v1,v2,v3),i)=vj i∈[1..3] 
 vertex(new(p,v),i)=if i=vertices(p)+1 then v else vertex(p,i) 

Pre-conditions (forall p:Polygon; i:num) 

 vertex(p,i) requires i∈[1..vertices(p)] 
 

ADT Drawing 

Operations 

 new: → Drawing new: Drawing Polygon → Drawing 

 move: Drawing num num → Drawing 

 poly: Drawing num → Polygon polies: Drawing → num 
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Axioms (forall d:Drawing; dh,dv,i:num; p:Polygon) 

 poly(move(d,dh,dv),i) = move(poly(d,i),dh,dv) 

 polies(new()) = 0; polies(new(d,p)) = polies(d) + 1 

 poly(new(d,p),i) = if i=polies(d)+1 then p else poly(d,i) 

Pre-conditions (forall d:Drawing; i:num) 

 poly(d,i) requires i∈[1..polies(d)] 

In order to create the types that implement these ADTs we shall define the assertions that 
specify their behaviour – the contracts for their methods – from the ADT's axioms and 
pre-conditions. We will use in this example a general assertion language that extends the 
syntax of Java expressions with several given constructs (forall – a quantifier, and 
old – to refer to values before execution, are the ones we use in this paper). 

From ADT Specifications to Contracts 

When we try to establish the correspondence between the ADT specifications and class 
assertions we should, among other things, create a post-condition for each axiom that 
involves a command auxiliary function (ones that return an object of the type being 
defined, as for example, move). When we think about implementing ADT command 
functions, [Meyer97], we usually abandon the ADT applicative kind of specification, in 
which all operations are modeled as mathematical functions (function move, for 
example, returns a new Point that results from moving the original one). Instead, we 
adopt the more imperative style that prevails in software construction (where structures 
are modified instead of producing new ones). By this reason, it is usual to implement 
command functions as procedures, that is, methods that do not return any value. 

The axiom for the move operation in ADT Point suggests that the point 
coordinates change after a movement and it shows how they change. We would easily 
obtain the post-condition of the move method in type Point, 

a)x()==old(x())+h && y()==old(y())+v 

The object that results from moving the original point is the current object at the time the 
post-condition is evaluated (x() is implicitly applied to the current object); the x() 
coordinate of the original point object is given in a) by old(x()). 

The meaning of the axioms for the move function in the ADT for Polygon can be 
expressed as the following post-condition for the move method in type Polygon, 

b) forall int i in 1..vertices() |  
   vertex(i).equals(old(vertex(i)).move(dh,dv)) 

The object that results from moving the original polygon is the current object at the time 
the post-condition is evaluated. So, vertex(i) is called over the moved polygon – the 
current object – and gives the moved vertex. As in the ADT's axiom, here we say that this 
moved vertex equals the vertex we would obtain if we moved the corresponding vertex of 
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the original polygon (old(vertex(i)). The same reasoning could be applied to the 
move operation of type Drawing. These post-conditions assume that the result of the 
move methods in types Point and Polygon are functions that return a point and a 
polygon respectively (they are compared with the existing vertices and polygons). This 
goes against the above suggested idea that all methods that change the state are 
procedures, and which is itself consistent with the need for the clear distinction between 
commands, which change objects but do not directly return results, and queries, which 
provide information about objects but do not change them.  

Moreover, any expression obj.meth(args) that appears in an assertion, represents the 
value that is returned by the call of method meth over object obj with arguments args. If 
we recall that one of the important roles of assertions is to allow the monitoring of 
executions, we should look at these obj.meth(args) expressions as real method calls. 

The assertion in b) goes against the reasonable rule that one should not use 
operations with side effects in the specification of contracts that are to be monitored (in a 
monitored call, the invocation of move over old(poly(i)) would modify it. A classic 
example is the post-condition for the push operation on a Stack, 
pop().equals(old(this)) that is obtained from the axiom pop(push(X,S))=S. The 
evaluation of this post-condition at the end of the method execution would change the 
current stack by popping it the element just pushed, leaving it as it was before the push 
operation was executed.  

Assertions should be written using queries only, that is, its evaluation should be 
without side effects. Taking this as a rule from here onwards, let us see then how these 
post-conditions could be written. 

Contracts Can Bring Undesired Class Coupling 

In order to say – in  move method of type Polygon – that all vertices of a polygon have 
suffered movement we have to use the queries that type Point offers: 

c) forall int i in 1..vertices() | 
  vertex(i).x() == old(this).vertex(i).x()+dh && 
  vertex(i).y() == old(this).vertex(i).y()+dv 

This post-condition  completely defines the changes that were operated in the state of the 
system. It is also the only way we can write it because type Point does not supply any 
other way to show its changes after a movement. Nevertheless this post-condition is more 
revealing than it should. 

In order to say  – in  move method of type Drawing –  that all polygons of a 
drawing have moved, we have to limit ourselves to the queries that type Polygon 
offers: 

d) forall int i in 1..polies() | 
 forall int j in 1..poly(i).vertices() | 
  (poly(i).vertex(j).x() == 
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     old(this).poly(i).vertex(j).x()+dh)&& 
  (poly(i).vertex(j).y() == 
     old(this).poly(i).vertex(j).y()+dv) 

This post-condition is also more revealing than it should. As a consequence, the clients of 
this type must know about type Point and understand some of its methods in order to 
understand the result of applying the move method to a drawing composed of polygons! 
Clients of type Drawing shouldn't have to know about the exact changes in the 
polygon's coordinates (a set of polygons abstracts away the structured set of points that 
constitute the drawing). The encapsulation that is shown in figure 1 should be maintained 
at the level of assertions too. 

This post-condition increases coupling between the classes of the system. As we 
know, strong coupling brings undesirable designs due to the decreasing in extension and 
reuse. We should be able to act over a drawing of polygons solely through the polygons 
themselves. The ideal way to do this would be something like: 

e) forall int i in 1..polies() | something_about_poly(i)_only 

that would reveal the changes operated in the drawing only through their most direct state 
revealing queries. 

These examples show how a well-known problem that software designers deal with 
frequently, can emerge when we try to design by contract. This problem, and proposed 
solutions, is described by design pattern "Don't talk to strangers" [Larman98], which is 
related to "Chain of responsibility" [Gamma95], to be used during OO system design. 

The pattern places constraints on what objects should be sent messages to within a 
method. It states that, within a method, messages should only be sent to the following 
objects: i) the current object; ii) a parameter of the method; iii) an attribute of the current 
object; iv) an element of a collection which is an attribute of the current object; v) an 
object created within the method. 

The intent is to avoid coupling a client to knowledge of indirect objects and the 
internal representations of direct objects. Direct objects are a client's familiars, indirect 
objects are strangers and a client should only talk to familiars, not to strangers. 

Applying these ideas to the design of the Drawing's move method of our example 
would lead us to designing it as a call to the move method of each of its polygons (as was 
already suggested above in the ADT presentation). Likewise, Polygon's move method 
would be designed as a call to the move method of each of its vertices. This is shown in 
UML collaboration diagram in figure 2. This would be consistent with the design class 
diagram of figure 1, which presents the desired low coupling. 
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Fig. 2: UML colaboration diagram for the Drawing move operation 

Our concern when designing by contract is the same, although in design by contract we 
deal with specifications that is, with assertions, not with prescriptions. So, the advice to 
follow here is "don't talk about strangers"! The familiars in this context are i) the current 
object, ii) the parameters of the method, and iii) all objects that are accessible through 
functions of the class. Furthermore we are constrained by the fact that assertions must 
have no side effects. 

One possible approach would be to create several, and otherwise useless, methods 
that would reveal all about the class's internal objects and the internal objects of these 
ones or that would inform, in this case for example, whether a polygon had been moved 
for given distances. This has several drawbacks: i) the code in those methods – in the 
programming language in use – would be written manually, which brings an additional 
source of errors; ii) it may be the case that it is not possible to create any more methods in 
the supplier classes unless we extend it through inheritance. The additional effort that this 
approach requires can make design by contract unattractive. 

Another approach could be to write contracts that refer to the contracts of other 
methods allowing to say, for example, that the result of moving a polygon is the same as 
the result of moving all its vertices. We see two possible ways to reach this goal. 

One way to do this could be to create, for each method m in the supplier classes, two 
other methods that would evaluate the pre and the post-conditions of m. The post-
condition in e), for example, would call the post-move method applied to all the polygons 
of the drawing. This has the same i) and ii) above described drawbacks plus: iii) in what 
concerns the methods written to evaluate post-conditions, the programmer would have to 
be able to compare the new state with the old state of an object, for a command that had 
not been executed (only its post-condition would be evaluated)... this is not a trivial thing. 

The approach we advocate here allows to write assertions that talk about assertions 
of other methods without having to manually write any additional code. Furthermore, in 
order to be possible to monitor contracts at runtime, we propose a process of generation 
of (simple) assertions in some existing assertion language from these (meta) assertions, 
that can be automated. The assertions that will ultimately be monitored are assertions 
written in some existing assertion language. So, the automatic generation of code for 
monitoring, provided by existing tools, is fully reused. All the effort in designing by 
contract is put on the writing of assertions, not on coding. 
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3 META-ASSERTIONS – A PROPOSAL 

The approach we advocate asks for an expressiveness that none of the assertion languages 
that we know possesses. Our proposal is a new construct, a kind of a meta-construct, for 
assertion languages that allows to refer to assertions of other methods.  

This approach brings several enhancements to existing assertion languages and tools: 
i) it allows the writing of very simple and easily understandable assertions; ii) it helps 
keeping class coupling low; iii) it promotes encapsulation; iv) it eases the job of contract 
writers, of method implementors, and of client classes implementors. A discussion on the 
benefits that they bring to the several entities involved in software specification and 
implementation can be found in [Nunes02]. 

Informal Syntax and Semantics 

The new constructs are »pre and »post, that are used to represent, respectively, the 
pre-condition and the post-condition of the method to which they are applied. 

Let us return to the move operation for the Drawing type. With the proposed 
approach we would write this post-condition as: 

f) forall int i in 1..polies() | poly(i).move(dh,dv)»post 
which intended meaning is: after the execution of the command move applied to an 
object of type Drawing, the state is the same that results from applying the move 
operation to all its polygons. In other words, the post-conditions of all commands move 
applied to all the drawing polygons are true in the resulting state. These meta-assertions 
refer to assertions, not to methods. So, when they are monitored, there is no execution of 
methods move but, instead, the evaluation of the post-conditions of those methods.  

In this way, we are able to represent the result of an operation by writing only the 
conditions that are of the direct responsibility of the enclosing class. We do this without 
creating unnecessary query methods for querying objects that are "strangers" to client 
classes. 

When Monitoring Enters the Scene 

How can meta assertions be monitored, that is, how can code be generated from them that 
can be executed before (pre-conditions) and after (post-conditions) the method code 
itself? Meta assertions by themselves cannot be evaluated by existing tools. They denote 
other assertions that, in turn, may denote other assertions. In order to evaluate a given 
meta assertion by an existing tool, we have to expand it until it is composed of simple 
assertions only. Informally, simple assertions are assertions that do not contain any of the 
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»pre and »post meta constructs. For example, the (meta) post-condition of the 
Polygon's move method would expand to the (simple) post-condition: 

g) forall int j in 1..vertices() | 
    vertex(j).x()==vertex(j).old(x())+dh && 
    vertex(j).y()==vertex(j).old(y())+dv 

Likewise, the (meta) post-condition of the Drawing's move method would expand to 
the (simple) post-condition: 

h) forall int i in 1..polies() | 
 forall int j in 1..poly(i).vertices()| 
  poly(i).vertex(j).x()== 
    poly(i).vertex(j).old(x())+dh && 
   poly(i).vertex(j).y()== 
    poly(i).vertex(j).old(y())+dv 

Even if the assertions that are finally monitored are the ones that refer to second (and 
possibly lower) level information, the extra coupling that they bring do not imply the 
costs that are usually associated to high coupling. Let us see how. 

 
Fig. 3 

When, in figure 3, the simple post-condition is generated from the meta post-condition of 
methA() in class A, an expression is obtained that refers to objects of types B and C: 
b().c().Pc. Usually, higher coupling brings more difficult extension, but this is not 
the case here: if the post-condition of methC() changes, the (meta) post-conditions of 
methB() and methA() do not need to change. Only the corresponding simple post-
conditions must change; if the process of expanding meta assertions is automated, this is 
easily done automatically by recompiling types B and A in order for these simple post-
conditions to be re-generated. 

Thus, there is total encapsulation in what meta assertions are concerned, and almost 
total encapsulation in what the corresponding expanded assertions are concerned 
(depending on the re-compilation to generate the new simple assertions). 

In order to check (meta) contracts at runtime, we depart from: 
• i) a set of classes written in an existing OO programming language PL; ii) the 

(meta) contracts for those classes written in an assertion language MAL which is 
an existing assertion language AL (for PL) extended with meta-constructs; 

and we want to: 
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• iii) generate the simple assertions in the assertion language AL as expansions of 
the original meta-assertions; iv) use the tools for monitoring code generation that 
already exist for the pair (PL,AL). 

The idea is that all syntactic and semantic checking of simple assertions are done by the 
existing tool for AL. This can be so because we prove that meta-assertion expansion 
process preserves grammatical correctness and semantics.  

Syntax of Meta-Assertions 

As a first step we must specify the syntax of the meta-assertion language MAL as an 
extension of a base language AL. The syntactic notation we use is based on BNF. We list 
the various syntactic categories and give meta-variables that will be used to range over 
constructs of each category:  

a will range over (simple) assertions, Assn ma will range over meta-assertions, MAssn 

bm will range over basic-metas, BMeta mp will range over meta-paths, MPath 

p will range over paths, Path memb will range over members, Memb 

mc will range over method calls, MC atc will range over attribute calls, AttC 

ref will range over references to objects, RObj exp will range over expressions, Exp 

The assertions of MAL have the same structure as those of AL with the difference that 
the ones in MAL are the ones in AL augmented with elements of BMeta, that is, basic-
metas. We assume that the structure of assertions – method calls, attribute calls, 
references to objects and expressions – is given elsewhere by the syntax of the assertion 
language AL that serves as the basis for MAL. This assertion language eventually 
depends on the programming language for which it is designed. We define the other 
categories in a way that is independent of the details of the chosen assertion language. 
The structure of the other constructs is:  

     bm ::= mp»pre | mp»post      mp ::= mc | applyP (p,mc) 

      p ::= ref | memb | applyP (p,memb)      memb ::= atc | mc 

The function applyP: Path × Memb → Path is used to define paths in a way that is 
independent of the details of AL. If, for example, the assertion language in question were 
iContract or Eiffel, the result of applyP(p,memb) would be p.memb because that is the 
way how application of methods and attributes is done in those languages. If it were an 
assertion language based on Smalltalk the result would be p memb. We also consider that 
the category RObj of the assertion language has a special element denoting the current 
object (Current in Eiffel, this in Java, self in Smalltalk) and which we represent 
by cur(). We call target method the method corresponding to mc in a basic-meta.  
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In order to evaluate or to expand a given meta-assertion ma that is part of the 
contract for a method mth in a type ty, we need to be able to access information about 
some ty supplier classes: to evaluate basic-meta applyP(p,mc)»pre, for example, we 
need to access information about the members of p's type. 

Consider the following sets of identifiers and corresponding meta-variables that will 
be used to range over their elements. These sets will constitute the context for the 
evaluation of meta-assertions and, later, for the process of expansion. 

TYPEID – set of type identifiers ranged over by ty 
ATTRID – TYPEID-indexed set of attribute identifiers ranged over by attr 
METHID – TYPEID-indexed set of method identifiers ranged over by mth 
PARAMID – METHID-indexed set of parameter identifiers ranged over by par 
PRESTID – {pre, post} ranged over by prest 

The following functions abstract away the details of the assertion and programming 
languages in which meta-assertions are based, allowing to represent information about 
types and assertions in terms of the sets of identifiers and of the syntactic constructs 
defined above. The way they are implemented obviously depends on the details of each 
assertion and programming languages.  

MembList: TYPEID → Pow(METHID ∪ ATTRID) Params: TYPEID×METHID →  Pow(PARAMID) 

TypeOfMeth: TYPEID × METHID →  TYPEID TypeOfAttr: TYPEID × ATTRID →  TYPEID 

TypeOfRef: TYPEID×METHID×RObj→ TYPEID Meth: TYPEID × MC →  METHID 

Attr: TYPEID × AttC →  ATTRID Cond: TYPEID×METHID×PRESTID →  MAssn 

BasicM: MAssn → Pow (BMeta) ActualPar: MPath → Pow (Exp) 

Members: Pow (METHID ∪ ATTRID)  × MAssn →  Pow (MC ∪ AttC) 

The MembList function gives the method and attribute identifiers that are defined in a 
given type – its members. The Params function gives the formal parameters of a given 
method in a type. The functions TypeOf... give the identifier of the type to which the 
given method, attribute or object reference belongs. In the TypeOfRef function the third 
parameter – reference to object – can be a logical variable of the assertion language (for 
example in a forall construct) or it can be a formal parameter; that is why an extra 
argument is needed – the identifier of the method containing the assertion – in order to 
know the type of the reference.  

The Meth and Attr functions give the method and attribute identifier, respectively, 
that correspond to a given method or attribute call. 

The Cond function gives the meta-assertion that is the pre or post-condition – 
depending on its third argument – of a given method on a given type. We assume that the 
pre- and post-conditions supplied by this function are the ones for the given type and 
method. That is, it is not supposed oring pre-conditions with ancestor pre-conditions to 
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obtain the pre-condition referred to by the meta-assertion, nor anding post-conditions 
with ancestor post-conditions to obtain the post-condition referred to by the meta-
assertion. Its implementation obviously depends on the base assertion language. If this 
language supposes, like iContract and Eiffel, that, for example, the pre-condition written 
in a method is the result of oring it with its ancestors' pre-conditions, then function Cond 
has to be implemented in a way that returns this complete pre-condition. On the contrary, 
if the base assertion language supposes, like Jass and ContractJava, that the pre-condition 
written in a method is as it is (they generate code that check the hierarchical dependencies 
of assertions at runtime), then the Cond function has to result accordingly. 

The BasicM function gives all the basic-metas that appear in a given meta-assertion. 
The Members function gives the method and attribute calls that appear in a meta-assertion 
that correspond to given method and attribute identifiers. Finally, the ActualPar function 
gives the expressions that constitute the actual parameters in the method call of a meta-
path.  

The following rules give us the type of a path. They establish a relation between 
elements of Path and TYPEID given a context composed of a pair of elements of 
TYPEID and METHID which represent the type or class and the method within which 
the path appears. 

 
[Type1]: 

ty,mth î p → type ty1   Meth(ty1,mc)=mth1 

ty,mth î applyP(p,mc) → type TypeOfMeth(ty1,mth1) 

 

[Type2]: 

ty,mth î p → type ty1   Attr(ty1,atc)=attr1 

ty,mth î applyP(p,atc) → type TypeOfAttr(ty1,attr1) 

 

[Type3]: 

 

ty,mth î ref → type TypeOfRef(ty,mth,ref) 

 

 

The type of a path is the type of the tail method/attribute of the path. The form ref for the 
path applies to the other possibilities.  

Semantics of Meta-assertions 

Next we present the semantics of MAL assuming a language AL as the base assertion 
language. We only present the rules for the operational semantics of basic-metas. We do 
not consider the evaluation of basic-metas which target method is not a command or 
procedure, that is, which target method is a function that returns a result, for obvious 
reasons. We consider that the basic-meta mc»prest is semantically equivalent to 
applyP(cur(),mc)»prest. 

The semantics is given operationally through a set of rules (fig. 4) that, given a 
configuration that includes, among other elements, a meta-assertion and a state, gives a 
boolean value. The way rules are expressed is similar to the one adopted in [Winskel92]. 
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 [basicM1]: 

ActualPar(mc)={exp0 ... expm} Params(ty',mth')= {par0 ... parm} 

o= Object(s(old),cur(),p) y= Object(s(young),cur(),p)     ma= Cond(ty',mth',prest) [expj/parj]  for j∈ [0,m] 

(ty', mth', prest)∉Lm     <ty',mth',ma,s[ o→s(old)[cur()],y→s(young)[cur()]],Lm∪{(ty',mth',prest)}> →   bool 

<ty,mth, applyP(p,mc)»prest,s,Lm>  →   bool 

where ty' is the static type of p, given by ty,mth î p →type ty' and mth' is the method id given by mth' = Meth(ty', mc) 
 

[basicM2]: 

 (ty', mth', prest) ∈Lm 
<ty,mth, applyP(p,mc)»prest,s,Lm> →    ⊥ 

where ty' is the static type of p, given by ty,mth î p →type ty' and mth' is the method id given by mth' = Meth(ty', mc) 
 

[applyMPath]: 
 MembList(ty')=MList Members(MList,ma)={memb0 ... membn} 

 o= Object(s(old),cur(),mp) ma'=ma[mp/cur()][applyP(mp,membj)/membj] for j∈ [0,n] 

 y= Object(s(young),cur(),mp) <ty,mth,ma,s[ o→s(old)[cur()],y→s(young)[cur()]],Lm> →bool 

<ty,mth, ma',s,Lm>  →    bool 

where ty' is the type of mp 
Fig. 4: Operational semantics for meta-assertions in MAL 

Remember that the only command that is executed and that can change the state is the 
original one – the one that contains the original meta-assertion in its contract. Throughout 
the evaluation of the meta-assertions that compose the original meta-assertion, no more 
commands are executed – only queries are executed and these do not change the state.  

So, the objects that are of interest, in what a (non-constructor) method is concerned, 
are i) the current object before the method has been executed and the same current object 
after the method has been executed; ii) the objects referred to by the actual parameters 
before and after method execution, insofar as they may be modified. 

The objects that the method may create are of two kinds: i) local entities that are not 
interesting in what concerns the evaluation of the method contract; ii) other objects that 
happen to be components of the current object or of the objects referred to by the 
parameters. These latter objects are already included in the objects that we referred above 
as being the interesting ones. 

The need for the old versions of the potentially modifiable objects has to do with the 
old construct that typically all assertion languages define. This construct changes the 
object to which is applied its operand path – in old p, p is applied to the object as it was 
before the execution of the original command method. 
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A state s is a pair <s(old),s(young)> where s(old), respectively s(young), represents 
the part of state s that contains information about the old, respectively young, versions of 
objects. These two elements of a state are mappings from objects to type-values pairs 
<dynamic_type,attribute_values>. We denote by s(v)[ref] the type-values pair 
corresponding to object ref in its v version. For example, s(old)[cur()] is the type-values 
pair that gives the dynamic type and the values of attributes of the current object in its old 
version. 

We denote by Object(s,ref,p) the type-values pair <dynamic_type,attribute_values> 
that represents the object that results from applying path p to object ref in state s. We 
denote by s[val→ref] the state that is equal to s except in the value of ref which is equal 
to val. 

If the original assertion is a pre-condition, the old part of the state is irrelevant, 
because pre-conditions are evaluated before method execution. If the assertion is a post-
condition then both these parts are important and are eventually not equal. 

A configuration is a tuple <ty,mth,ma,s,Lm> where ty∈TYPEID, mth∈METHID, 
ma∈MAssn, s is a state and Lm is a set of triples (tyn,mthn,prestn) where tyn∈TYPEID, 
mthn∈METHID and prestn∈PRESTID. The initial configuration is <ty,mth,ma,s0, ∅> 
where ma is a meta-assertion belonging to method mth in type ty, and that is to be 
evaluated in state s0. State s0 is such that s0(young) contains information about the current 
object cur() and about all the objects referred to by the method parameters as they are 
at the time meta-assertion ma is evaluated. The old part of s0, s0(old), contains 
information about the old versions (that is, as they were before the method was executed) 
of the objects that are referred to in old constructs of assertion ma. 

The rule [basicM1] says that the boolean value of a given basic-meta 
applyP(p,mc)»prest in a state s is the same as the result of evaluating the prest (pre 
or post) condition of method mc (with actual/formal parameters substitution) in another 
state. This other state is equal to s except in its old and young versions of the current 
object: these are the objects that result from evaluating path p over the old and young 
versions of the current object of s.  

The evaluation of the basic-metas stops with an error (rule [basicM2]) if the original 
meta-assertion is circular that is, if in the process of evaluating basic-metas of assertions, 
a basic-meta is reached which target method has already appeared in the evaluation 
process. The control of circularity is done by keeping information about the basic-metas 
that are to be evaluated. This information is kept in a list of triples, Lm, composed of: i) 
the identifier of the target method of the basic-meta, ii) the type from which that method 
is a member and iii) the kind – pre or post – of the basic-meta. If there already exists a 
triple in the list for some of the basic-metas that must be evaluated, then the meta-
assertion is circular and its evaluation is not possible by rule [basicM2]. 

Rule [applyMPath] says that an assertion ma in which we syntactically substitute 
applyP(mp,memb) for all its members memb, evaluates in a given state s to the same 
value as the given assertion ma when evaluated in a state where the current object is the 
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object given by mp. We denote by ma[p'/p] the assertion that is obtained from ma by 
syntactically substituting path p' for all occurrences of path p. As an example, with Java 
as the base programming language, 

<ty,mth,x(),s',Lm > → bool implies < ty,mth,vertex(i).x(),s,Lm > → bool 

where s' is identical to s except in the old and young versions of the current object. The 
old, respectively young, version is the pair composed of the dynamic type of the object 
returned by the vertex(i) applied to the old, respectively young, version of cur() 
in s, and the values of the attributes of that same object. That is,  

s' = s [Object(s(old),cur(),vertex(i)) →s(old)[cur()], 

    Object(s(young),cur(),vertex(i)) →s(young)[cur()] ] 

The following example, where we take for the base assertion language AL the Eiffel 
language, will help understanding the rules: 

class CARGOFLEET feature 
 ship:SHIP is do ... end 
 fleet:FLEET is do ... end 
 putBox(b1:BOX) is 
 do ... 
 ensure 
  (ship.putBox(b1)»post) 
  ((ship.full)implies (fleet.addShip(ship)»post)) 
 end 
end -- class CARGOFLEET 
 
class FLEET feature 
 ... 
end -- class FLEET 
 
class SHIP feature 
 numberBoxes:INTEGER is do ... end 
 box(i:INTEGER):BOX is do ... end 
 full:BOOLEAN is do ... end 
 putBox(boxToPut:BOX) is 
 do ... 
 ensure 
  (old full) implies numberBoxes=1 
  (not old full) implies  
     (numberBoxes=old numberBoxes+1) 
  equal(box(numberBoxes),boxToPut) 
 end 
end -- class SHIP 
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Suppose we want to evaluate the first basic-meta of the post-condition of the putBox 
method of class CARGOFLEET which is (ship.putBox(b1)»post).  

<CARGOFLEET, putBox, applyP(ship,putBox(b1))»post, s, Lm> →   ?  

where s has information about the instance of class CARGOFLEET to which was applied 
the method putBox(b1) and also about object b1 of type BOX. The result of this 
evaluation, by rule [basicM1], is the same as we get by evaluating the meta-assertion 
(notice the substitution of parameters): 

(old full) implies numberBoxes=1 
(not old full) implies (numberBoxes=old numberBoxes+1) 
equal(box(numberBoxes),b1)  

in a state where the current object is not a CARGOFLEET object as it was before but, 
instead, the SHIP object that results from applying the ship method to that former 
current object. 

4 EXPANSION OF META-ASSERTIONS 

If contracts are to be checked at runtime, meta-assertions must be expanded so that the 
monitoring code generation tool that is to be used can generate runtime checking code 
from simple assertions in the base assertion language. We propose a process of expansion 
that abstracts away from the details of the base assertion and programming languages. 
This is achieved by using the functions and sets of identifiers defined in the previous 
section for the semantics of meta-assertions. 

The rules that define the expansion of a meta-assertion into a simple assertion are 
presented in figure 5. Notice that the detailed syntax of a meta-assertion ma is not 
relevant here. The important thing here is that simple-assertions are substituted for basic-
metas within a meta-assertion. The structure of the meta-assertion is kept the same (if for 
example ma is of the form bm1andbm2 then the simple assertion that results from its 
expansion is also of the form a1anda2 where a1 and a2 are the expansions of bm1 and 
bm2, respectively). 
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[Expand1]: 

BasicM(ma)={bm0 ... bmn}  where bmj= applyP(pj,mcj)»prestj    for j∈ [0,n] 

ty,mth î pj →type tyj   Meth(tyj, mcj)= mthj   (tyj, mthj, prestj)∉Lm for all j∈ [0,n] 

tyj mthj î bmj →lowM maj   Lm∪{(tyj, mthj, prestj)},ty,mth î maj →E aj 

Lm,ty,mth î ma  → E ma[a0/bm0 ... an/bmn] 
 

[Expand2]: 

BasicM(ma)={bm0 ... bmn}   where bmj= applyP(pj,mcj)»prestj    for j∈ [0,n] 

ty,mth î pj →type tyj    Meth(tyj, mcj)= mthj  (tyj, mthj, prestj) ∈Lm  for some j∈ [0,n] 

Lm,ty,mth î ma → E ⊥ 
 

[LowerMeta]: 

ActualPar(mc)={exp0 ... expm}  Params(ty',mth')= {par0 ... parm}   Cond(ty',mth',prest) = ma 

ma'=ma[expj/parj] for j∈ [0,m]  MembList(ty')=MList  Members(MList,ma')= {mc0 ... mcn atc0 ... atcl} 

ty' mth' î applyP(p,mc)»prest → lowM ma' [p/cur()] [applyP(p,mcj)/mcj] for j∈ [0,n] [applyP(p,atcj)/atcj] for j∈ [0,l] 
 

 [CurPath]: 

î applyP(cur(),mc)»prest →E a 

î mc»prest →E a 
 

Fig. 5: Rules for the expansion of meta-assertions 

For a given meta-assertion ma, the [Expand1] rule gives a meta-assertion that is equal to 
ma with all its basic-metas expanded. The substitution ma[a0/bm0 ... an/bmn] takes into 
account the renaming of logical variables (for example when there are two quantifiers 
that use the same logical control variable). These Expand rules prevent circular meta-
assertions, as was done in rules of fig. 4, by keeping information about the basic-metas 
that are to be expanded. If there already exists a triple in the list for some of the basic-
metas that must be expanded, then the meta-assertion is circular and its expansion is not 
possible by the [Expand2] rule. 

In the [Expand1] rule several applications of the [LowerMeta] rule are needed in 
order to obtain the meta-assertions that result from the basic-metas that have to be 
expanded. These meta-assertions have to be expanded because they may themselves 
contain basic-metas. 

The meta-assertion that results from the application of the [LowerMeta] rule over a 
basic-meta applyP(p,mc)»prest (which we call generating basic-meta) is obtained by 
taking the post or pre-condition – depending on prest – of its target method, say Cond, 
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and transforming it. This transformation is done by substituting in Cond all actual 
parameters for formal parameters and then applying the path p to all the method and 
attribute calls – the members – that appear in this modified Cond. Moreover, all 
references to cur() change to p. 

In the CARGOFLEET example above, when expanding the meta-assertion of the 
putBox method of class CARGOFLEET, we would obtain the basic-metas: 
ship.putBox(b1)»post and fleet.addShip(ship)»post. 

When applying the [LowerMeta] rule to the first one, the post-condition of the 
putBox method of class SHIP would be taken and transformed as mentioned, that is, 
the following meta-assertion would be obtained: 

(old ship.full) implies ship.numberBoxes=1 and  

(not old ship.full) implies 

    (ship.numberBoxes=old ship.numberBoxes+1)  

and equal(ship.box(ship.numberBoxes),b1) 

There was a substitution of actual parameter b1 for the formal parameter boxToPut. 
All calls to members of class SHIP – the type of the path of the generating basic-meta – 
were applied that path, that is, ship. In this case the member calls are only method calls: 
numberBoxes, full and box.  

The expansion of a meta-assertion preserves grammatical correctness, that is, given 
ma∈MAssn grammatically correct, the simple assertion a∈Assn in ∅,ty,mth î ma →E a 
where ma appears in some of the assertions of method mth's contract in type ty, is 
grammatically correct. The proof of this result appears in [Nunes02]. 

We further prove the soundness of the expansion by proving that, for all meta-
assertion ma that appears in some of the assertions of method mth's contract in type ty, all 
state s and boolean value bool, if ma evaluates to bool in state s so does its expansion; 
and if the evaluation diverges, so does the evaluation of ma's expansion. Furthermore, if 
the evaluation of ma stops in error, so does its expansion.  

Proposition (SOUNDNESS). 
The expansion of a meta-assertion is sound with respect to the semantics, that is, 

given ma∈MAssn that appears in some of the assertions of method mth's contract in type 
ty, 

1. <ty,mth,ma,s,Lm>→bool implies  <ty,mth,a,s,Lm> → bool 
2. <ty,mth,ma,s,Lm> diverges implies  <ty,mth,a,s,Lm> diverges 
3. <ty,mth,ma,s,Lm>→⊥ implies  Lm,ty,mth î ma → E⊥ 

where the simple assertion a∈Assn is such that Lm,ty,mth î ma  → E a that is, a is the 
expansion of ma. The proof of this result appears in [Nunes02]. 
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5 CONCLUSIONS AND FURTHER WORK 

We presented an approach to design by contract that promotes low coupling and 
encapsulation in contract assertions: applying the general responsibility assignment 
pattern for design by contract "Don't talk about strangers" when building pre and post-
conditions. This concern revealed a lack of expressive power in existing assertion 
languages, which we tried to fill by introducing the concept of meta-assertion. These 
meta-assertions extend some base assertion language, and allow the writing of very 
simple yet very expressive assertions. If monitoring is a goal, these can be expanded into 
simple-assertions of the base assertion language and can be monitored by existing tools, 
while maintaining total encapsulation in what meta assertions are concerned, and almost 
total encapsulation in what the corresponding expanded assertions are concerned 
(depending on the re-compilation to generate the new simple assertions). 

There are some aspects of contracts that were not studied in what meta-assertions are 
concerned, as for example, assertions that include the super or Precursor reference, frame 
conditions (for example MOD in COLD-1, assignable in JML, changeonly in Jass), and 
others, which should be resolved if we want the expansion of meta-assertions to be 
possible when applied to a real assertion language. 

Inheritance was a concern in the semantics and in the expansion of meta-assertions 
insofar as the pre and post-conditions that are picked up to be evaluated in figure 4 and to 
be expanded in figure 5 result from function Cond which, as explained, returns the 
complete assertion of the method (that is, if the method is redefining one of its 
ascendants, its assertions already reflect ascendant assertions). However, the semantic 
rules and the expansion rules ignore the polymorphism of object references in the 
definition of the supplier assertions that are picked up to be evaluated or to be expanded. 
These are the pre and post-conditions of target methods of basic-metas concerning the 
static type of the path to which they are applied (see rules [Expand1] and [BasicM1]). We 
are studying the pros and cons (against other solutions) of this approach in the monitoring 
of polymorphic entities. 
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