

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 3

Special Edition: TOOLS USA 2002 proceedings

Cite this article as follows: Isabel Nunes: Design by Contract Using Meta-Assertions, in Journal of
Object Technology, Vol. 1, No. 3, Special Edition: TOOLS USA 2002 proceedings, pages 37-56.
http://www.jot.fm/issues/issue_2002_08/article3

Design by Contract Using Meta-
Assertions

Isabel Nunes, University of Lisbon, Portugal

Abstract
Contract writing for methods in classes that are clients of other classes can bring
undesirable effects, like the increasing in class coupling and encapsulation decreasing.
We propose a pattern to the design of class contracts that helps producing contracts
that preserve low class coupling and data encapsulation. The expressive power of
existing assertion languages is insufficient, however, to write these contracts. In order to
fill this lack we propose meta-assertions, and we define rules for a grammatically and
semantically sound expansion of meta-assertions in order to be able to monitor
contracts at run-time using already existing tools.

1 INTRODUCTION

The use of contracts to establish the rights and obligations of clients and suppliers is
becoming widely accepted in the construction of reliable object-oriented software
systems.

In what concerns the construction of classes, the design by contract programming
discipline [Meyer97] stresses the need to precisely define the behaviour of modules
through claims and responsibilities – the contracts. The specification of contracts – pre
and post-conditions – for each method of a type is possible in several existing assertion
languages – iContract [iContract], COLD-1 [Jonkers91], Jass [Bartezko01], Eiffel
[Meyer97], ContractJava [Findler01], Larch family [Guttag85], JML [Leavens00] among
them. Some of these – Jass, iContract, Eiffel – as well as others, allow the monitoring of
contracts at runtime.

Specifying contracts is very important to the correct reuse of software. Clients must
know the rules of the business. Thus, methods must make their pre and post-conditions
public knowledge. Moreover, contract specifications are important insofar as they can be
used to verify program properties [Havelund00, Jacobs01, Van der Berg01].

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_08/article3

DESIGN BY CONTRACT USING META-ASSERTIONS

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Testing contract assertions at run-time is also important because it is a way to ensure
that methods are executed only if they are given the proper conditions, and to ensure that
only correct implementations of specifications are executed.

The several languages of assertions, and monitoring code generation tools that exist
allow the specification and, eventually, the runtime checking of very powerful and
elegant contracts. This is definitely so for classes as simple as Stack, Point or Account.
However, the task of specifying contracts for methods in classes that are clients of these
simple classes, is harder and can bring undesirable effects like the increasing in class
coupling and encapsulation decreasing. The benefits we gain from writing monitorable
assertions that do not suffer from these defects can turn to be considered as not enough
rewarding when compared with the effort we must put in that task.

We propose a general responsibility assignment pattern for design by contract that is
to be used in the writing of assertions while avoiding the above mentioned undesirable
effects. This way of doing design by contract demands for additional expressive power
from assertion languages. We also propose a general extension for assertion languages
while maintaining the semantics of simple assertions and reusing monitoring code
generation tools that eventually exist for those languages.

The paper consists of five sections. In the next section we show, through the use of
an example, how contracts should and should not be written if one aims at low class
coupling and encapsulation of object components. The approaches that existing assertion
languages allow to follow in the specification of this kind of assertions are not satisfying
in what respects several criteria. Section 3 presents our approach – meta-assertions – in
an informal way, stressing its benefits from several points of view. It also gives the
formal syntax of meta-assertions and the rules that define its operational semantics.
Section 4 presents the rules for the expansion of meta-assertions into simple assertions
abstracting away the details of the assertion language that serves as the basis for meta-
assertions. Section 5 presents the conclusions and further work.

2 MOTIVATION

Let us take a first example to show the reasons why we are compelled to write assertions
in a given way, and the reasons why it is not the best way to write them. This example
deals with points, polygons (whose vertices are points) and drawings (which are
composed of polygons). Each one of these types defines an operation of movement by
given distances both horizontally (dh) and vertically (dv).

The semantics of these operations are given, in a rigorous way, through axioms in
the abstract data types (ADTs) that define types Point, Polygon and Drawing.

Motivation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 39

Fig. 1: Polygon is a client of Point and a supplier for Drawing

In order to build classes as correct implementations of the corresponding ADTs we have
to implement each method of the classes in such a way that the axioms are true for each
and every possible instance of the class. In what concerns the move operations, the
relevant parts of these ADTs can be given by:

ADT Point

Operations

 x: Point → num y: Point → num move: Point num num →Point

Axioms (forall p:Point, dh,dv:num)

 x(move(p,dh,dv)) = x(p) + dh y(move(p,dh,dv)) = y(p) + dv

ADT Polygon

Operations

 new: Point Point Point→Polygon new: Polygon Point→Polygon

 move: Polygon num num→Polygon vertex: Polygon num→Point

 vertices: Polygon→num

Axioms (forall p:Polygon; dh,dv,i:num; v,v1,v2,v3:Point)

 vertex(move(p,dh,dv),i) = move(vertex(p,i),dh,dv)

 vertices(new(v1,v2,v3))=3 vertices(new(p,v))=vertices(p)+1

 vertex(new(v1,v2,v3),i)=vj i∈[1..3]
 vertex(new(p,v),i)=if i=vertices(p)+1 then v else vertex(p,i)

Pre-conditions (forall p:Polygon; i:num)

 vertex(p,i) requires i∈[1..vertices(p)]

ADT Drawing

Operations

 new: → Drawing new: Drawing Polygon → Drawing

 move: Drawing num num → Drawing

 poly: Drawing num → Polygon polies: Drawing → num

DESIGN BY CONTRACT USING META-ASSERTIONS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Axioms (forall d:Drawing; dh,dv,i:num; p:Polygon)

 poly(move(d,dh,dv),i) = move(poly(d,i),dh,dv)

 polies(new()) = 0; polies(new(d,p)) = polies(d) + 1

 poly(new(d,p),i) = if i=polies(d)+1 then p else poly(d,i)

Pre-conditions (forall d:Drawing; i:num)

 poly(d,i) requires i∈[1..polies(d)]

In order to create the types that implement these ADTs we shall define the assertions that
specify their behaviour – the contracts for their methods – from the ADT's axioms and
pre-conditions. We will use in this example a general assertion language that extends the
syntax of Java expressions with several given constructs (forall – a quantifier, and
old – to refer to values before execution, are the ones we use in this paper).

From ADT Specifications to Contracts

When we try to establish the correspondence between the ADT specifications and class
assertions we should, among other things, create a post-condition for each axiom that
involves a command auxiliary function (ones that return an object of the type being
defined, as for example, move). When we think about implementing ADT command
functions, [Meyer97], we usually abandon the ADT applicative kind of specification, in
which all operations are modeled as mathematical functions (function move, for
example, returns a new Point that results from moving the original one). Instead, we
adopt the more imperative style that prevails in software construction (where structures
are modified instead of producing new ones). By this reason, it is usual to implement
command functions as procedures, that is, methods that do not return any value.

The axiom for the move operation in ADT Point suggests that the point
coordinates change after a movement and it shows how they change. We would easily
obtain the post-condition of the move method in type Point,

a)x()==old(x())+h && y()==old(y())+v

The object that results from moving the original point is the current object at the time the
post-condition is evaluated (x() is implicitly applied to the current object); the x()
coordinate of the original point object is given in a) by old(x()).

The meaning of the axioms for the move function in the ADT for Polygon can be
expressed as the following post-condition for the move method in type Polygon,

b) forall int i in 1..vertices() |
 vertex(i).equals(old(vertex(i)).move(dh,dv))

The object that results from moving the original polygon is the current object at the time
the post-condition is evaluated. So, vertex(i) is called over the moved polygon – the
current object – and gives the moved vertex. As in the ADT's axiom, here we say that this
moved vertex equals the vertex we would obtain if we moved the corresponding vertex of

Motivation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 41

the original polygon (old(vertex(i)). The same reasoning could be applied to the
move operation of type Drawing. These post-conditions assume that the result of the
move methods in types Point and Polygon are functions that return a point and a
polygon respectively (they are compared with the existing vertices and polygons). This
goes against the above suggested idea that all methods that change the state are
procedures, and which is itself consistent with the need for the clear distinction between
commands, which change objects but do not directly return results, and queries, which
provide information about objects but do not change them.

Moreover, any expression obj.meth(args) that appears in an assertion, represents the
value that is returned by the call of method meth over object obj with arguments args. If
we recall that one of the important roles of assertions is to allow the monitoring of
executions, we should look at these obj.meth(args) expressions as real method calls.

The assertion in b) goes against the reasonable rule that one should not use
operations with side effects in the specification of contracts that are to be monitored (in a
monitored call, the invocation of move over old(poly(i)) would modify it. A classic
example is the post-condition for the push operation on a Stack,
pop().equals(old(this)) that is obtained from the axiom pop(push(X,S))=S. The
evaluation of this post-condition at the end of the method execution would change the
current stack by popping it the element just pushed, leaving it as it was before the push
operation was executed.

Assertions should be written using queries only, that is, its evaluation should be
without side effects. Taking this as a rule from here onwards, let us see then how these
post-conditions could be written.

Contracts Can Bring Undesired Class Coupling

In order to say – in move method of type Polygon – that all vertices of a polygon have
suffered movement we have to use the queries that type Point offers:

c) forall int i in 1..vertices() |
 vertex(i).x() == old(this).vertex(i).x()+dh &&
 vertex(i).y() == old(this).vertex(i).y()+dv

This post-condition completely defines the changes that were operated in the state of the
system. It is also the only way we can write it because type Point does not supply any
other way to show its changes after a movement. Nevertheless this post-condition is more
revealing than it should.

In order to say – in move method of type Drawing – that all polygons of a
drawing have moved, we have to limit ourselves to the queries that type Polygon
offers:

d) forall int i in 1..polies() |
 forall int j in 1..poly(i).vertices() |
 (poly(i).vertex(j).x() ==

DESIGN BY CONTRACT USING META-ASSERTIONS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

 old(this).poly(i).vertex(j).x()+dh)&&
 (poly(i).vertex(j).y() ==
 old(this).poly(i).vertex(j).y()+dv)

This post-condition is also more revealing than it should. As a consequence, the clients of
this type must know about type Point and understand some of its methods in order to
understand the result of applying the move method to a drawing composed of polygons!
Clients of type Drawing shouldn't have to know about the exact changes in the
polygon's coordinates (a set of polygons abstracts away the structured set of points that
constitute the drawing). The encapsulation that is shown in figure 1 should be maintained
at the level of assertions too.

This post-condition increases coupling between the classes of the system. As we
know, strong coupling brings undesirable designs due to the decreasing in extension and
reuse. We should be able to act over a drawing of polygons solely through the polygons
themselves. The ideal way to do this would be something like:

e) forall int i in 1..polies() | something_about_poly(i)_only

that would reveal the changes operated in the drawing only through their most direct state
revealing queries.

These examples show how a well-known problem that software designers deal with
frequently, can emerge when we try to design by contract. This problem, and proposed
solutions, is described by design pattern "Don't talk to strangers" [Larman98], which is
related to "Chain of responsibility" [Gamma95], to be used during OO system design.

The pattern places constraints on what objects should be sent messages to within a
method. It states that, within a method, messages should only be sent to the following
objects: i) the current object; ii) a parameter of the method; iii) an attribute of the current
object; iv) an element of a collection which is an attribute of the current object; v) an
object created within the method.

The intent is to avoid coupling a client to knowledge of indirect objects and the
internal representations of direct objects. Direct objects are a client's familiars, indirect
objects are strangers and a client should only talk to familiars, not to strangers.

Applying these ideas to the design of the Drawing's move method of our example
would lead us to designing it as a call to the move method of each of its polygons (as was
already suggested above in the ADT presentation). Likewise, Polygon's move method
would be designed as a call to the move method of each of its vertices. This is shown in
UML collaboration diagram in figure 2. This would be consistent with the design class
diagram of figure 1, which presents the desired low coupling.

Motivation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 43

Fig. 2: UML colaboration diagram for the Drawing move operation

Our concern when designing by contract is the same, although in design by contract we
deal with specifications that is, with assertions, not with prescriptions. So, the advice to
follow here is "don't talk about strangers"! The familiars in this context are i) the current
object, ii) the parameters of the method, and iii) all objects that are accessible through
functions of the class. Furthermore we are constrained by the fact that assertions must
have no side effects.

One possible approach would be to create several, and otherwise useless, methods
that would reveal all about the class's internal objects and the internal objects of these
ones or that would inform, in this case for example, whether a polygon had been moved
for given distances. This has several drawbacks: i) the code in those methods – in the
programming language in use – would be written manually, which brings an additional
source of errors; ii) it may be the case that it is not possible to create any more methods in
the supplier classes unless we extend it through inheritance. The additional effort that this
approach requires can make design by contract unattractive.

Another approach could be to write contracts that refer to the contracts of other
methods allowing to say, for example, that the result of moving a polygon is the same as
the result of moving all its vertices. We see two possible ways to reach this goal.

One way to do this could be to create, for each method m in the supplier classes, two
other methods that would evaluate the pre and the post-conditions of m. The post-
condition in e), for example, would call the post-move method applied to all the polygons
of the drawing. This has the same i) and ii) above described drawbacks plus: iii) in what
concerns the methods written to evaluate post-conditions, the programmer would have to
be able to compare the new state with the old state of an object, for a command that had
not been executed (only its post-condition would be evaluated)... this is not a trivial thing.

The approach we advocate here allows to write assertions that talk about assertions
of other methods without having to manually write any additional code. Furthermore, in
order to be possible to monitor contracts at runtime, we propose a process of generation
of (simple) assertions in some existing assertion language from these (meta) assertions,
that can be automated. The assertions that will ultimately be monitored are assertions
written in some existing assertion language. So, the automatic generation of code for
monitoring, provided by existing tools, is fully reused. All the effort in designing by
contract is put on the writing of assertions, not on coding.

DESIGN BY CONTRACT USING META-ASSERTIONS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

3 META-ASSERTIONS – A PROPOSAL

The approach we advocate asks for an expressiveness that none of the assertion languages
that we know possesses. Our proposal is a new construct, a kind of a meta-construct, for
assertion languages that allows to refer to assertions of other methods.

This approach brings several enhancements to existing assertion languages and tools:
i) it allows the writing of very simple and easily understandable assertions; ii) it helps
keeping class coupling low; iii) it promotes encapsulation; iv) it eases the job of contract
writers, of method implementors, and of client classes implementors. A discussion on the
benefits that they bring to the several entities involved in software specification and
implementation can be found in [Nunes02].

Informal Syntax and Semantics

The new constructs are »pre and »post, that are used to represent, respectively, the
pre-condition and the post-condition of the method to which they are applied.

Let us return to the move operation for the Drawing type. With the proposed
approach we would write this post-condition as:

f) forall int i in 1..polies() | poly(i).move(dh,dv)»post
which intended meaning is: after the execution of the command move applied to an
object of type Drawing, the state is the same that results from applying the move
operation to all its polygons. In other words, the post-conditions of all commands move
applied to all the drawing polygons are true in the resulting state. These meta-assertions
refer to assertions, not to methods. So, when they are monitored, there is no execution of
methods move but, instead, the evaluation of the post-conditions of those methods.

In this way, we are able to represent the result of an operation by writing only the
conditions that are of the direct responsibility of the enclosing class. We do this without
creating unnecessary query methods for querying objects that are "strangers" to client
classes.

When Monitoring Enters the Scene

How can meta assertions be monitored, that is, how can code be generated from them that
can be executed before (pre-conditions) and after (post-conditions) the method code
itself? Meta assertions by themselves cannot be evaluated by existing tools. They denote
other assertions that, in turn, may denote other assertions. In order to evaluate a given
meta assertion by an existing tool, we have to expand it until it is composed of simple
assertions only. Informally, simple assertions are assertions that do not contain any of the

Meta-Assertions – A Proposal

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

»pre and »post meta constructs. For example, the (meta) post-condition of the
Polygon's move method would expand to the (simple) post-condition:

g) forall int j in 1..vertices() |
 vertex(j).x()==vertex(j).old(x())+dh &&
 vertex(j).y()==vertex(j).old(y())+dv

Likewise, the (meta) post-condition of the Drawing's move method would expand to
the (simple) post-condition:

h) forall int i in 1..polies() |
 forall int j in 1..poly(i).vertices()|
 poly(i).vertex(j).x()==
 poly(i).vertex(j).old(x())+dh &&
 poly(i).vertex(j).y()==
 poly(i).vertex(j).old(y())+dv

Even if the assertions that are finally monitored are the ones that refer to second (and
possibly lower) level information, the extra coupling that they bring do not imply the
costs that are usually associated to high coupling. Let us see how.

Fig. 3

When, in figure 3, the simple post-condition is generated from the meta post-condition of
methA() in class A, an expression is obtained that refers to objects of types B and C:
b().c().Pc. Usually, higher coupling brings more difficult extension, but this is not
the case here: if the post-condition of methC() changes, the (meta) post-conditions of
methB() and methA() do not need to change. Only the corresponding simple post-
conditions must change; if the process of expanding meta assertions is automated, this is
easily done automatically by recompiling types B and A in order for these simple post-
conditions to be re-generated.

Thus, there is total encapsulation in what meta assertions are concerned, and almost
total encapsulation in what the corresponding expanded assertions are concerned
(depending on the re-compilation to generate the new simple assertions).

In order to check (meta) contracts at runtime, we depart from:
• i) a set of classes written in an existing OO programming language PL; ii) the

(meta) contracts for those classes written in an assertion language MAL which is
an existing assertion language AL (for PL) extended with meta-constructs;

and we want to:

DESIGN BY CONTRACT USING META-ASSERTIONS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

• iii) generate the simple assertions in the assertion language AL as expansions of
the original meta-assertions; iv) use the tools for monitoring code generation that
already exist for the pair (PL,AL).

The idea is that all syntactic and semantic checking of simple assertions are done by the
existing tool for AL. This can be so because we prove that meta-assertion expansion
process preserves grammatical correctness and semantics.

Syntax of Meta-Assertions

As a first step we must specify the syntax of the meta-assertion language MAL as an
extension of a base language AL. The syntactic notation we use is based on BNF. We list
the various syntactic categories and give meta-variables that will be used to range over
constructs of each category:

a will range over (simple) assertions, Assn ma will range over meta-assertions, MAssn

bm will range over basic-metas, BMeta mp will range over meta-paths, MPath

p will range over paths, Path memb will range over members, Memb

mc will range over method calls, MC atc will range over attribute calls, AttC

ref will range over references to objects, RObj exp will range over expressions, Exp

The assertions of MAL have the same structure as those of AL with the difference that
the ones in MAL are the ones in AL augmented with elements of BMeta, that is, basic-
metas. We assume that the structure of assertions – method calls, attribute calls,
references to objects and expressions – is given elsewhere by the syntax of the assertion
language AL that serves as the basis for MAL. This assertion language eventually
depends on the programming language for which it is designed. We define the other
categories in a way that is independent of the details of the chosen assertion language.
The structure of the other constructs is:

 bm ::= mp»pre | mp»post mp ::= mc | applyP (p,mc)

 p ::= ref | memb | applyP (p,memb) memb ::= atc | mc

The function applyP: Path × Memb → Path is used to define paths in a way that is
independent of the details of AL. If, for example, the assertion language in question were
iContract or Eiffel, the result of applyP(p,memb) would be p.memb because that is the
way how application of methods and attributes is done in those languages. If it were an
assertion language based on Smalltalk the result would be p memb. We also consider that
the category RObj of the assertion language has a special element denoting the current
object (Current in Eiffel, this in Java, self in Smalltalk) and which we represent
by cur(). We call target method the method corresponding to mc in a basic-meta.

Meta-Assertions – A Proposal

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

In order to evaluate or to expand a given meta-assertion ma that is part of the
contract for a method mth in a type ty, we need to be able to access information about
some ty supplier classes: to evaluate basic-meta applyP(p,mc)»pre, for example, we
need to access information about the members of p's type.

Consider the following sets of identifiers and corresponding meta-variables that will
be used to range over their elements. These sets will constitute the context for the
evaluation of meta-assertions and, later, for the process of expansion.

TYPEID – set of type identifiers ranged over by ty
ATTRID – TYPEID-indexed set of attribute identifiers ranged over by attr
METHID – TYPEID-indexed set of method identifiers ranged over by mth
PARAMID – METHID-indexed set of parameter identifiers ranged over by par
PRESTID – {pre, post} ranged over by prest

The following functions abstract away the details of the assertion and programming
languages in which meta-assertions are based, allowing to represent information about
types and assertions in terms of the sets of identifiers and of the syntactic constructs
defined above. The way they are implemented obviously depends on the details of each
assertion and programming languages.

MembList: TYPEID → Pow(METHID ∪ ATTRID) Params: TYPEID×METHID → Pow(PARAMID)

TypeOfMeth: TYPEID × METHID → TYPEID TypeOfAttr: TYPEID × ATTRID → TYPEID

TypeOfRef: TYPEID×METHID×RObj→ TYPEID Meth: TYPEID × MC → METHID

Attr: TYPEID × AttC → ATTRID Cond: TYPEID×METHID×PRESTID → MAssn

BasicM: MAssn → Pow (BMeta) ActualPar: MPath → Pow (Exp)

Members: Pow (METHID ∪ ATTRID) × MAssn → Pow (MC ∪ AttC)

The MembList function gives the method and attribute identifiers that are defined in a
given type – its members. The Params function gives the formal parameters of a given
method in a type. The functions TypeOf... give the identifier of the type to which the
given method, attribute or object reference belongs. In the TypeOfRef function the third
parameter – reference to object – can be a logical variable of the assertion language (for
example in a forall construct) or it can be a formal parameter; that is why an extra
argument is needed – the identifier of the method containing the assertion – in order to
know the type of the reference.

The Meth and Attr functions give the method and attribute identifier, respectively,
that correspond to a given method or attribute call.

The Cond function gives the meta-assertion that is the pre or post-condition –
depending on its third argument – of a given method on a given type. We assume that the
pre- and post-conditions supplied by this function are the ones for the given type and
method. That is, it is not supposed oring pre-conditions with ancestor pre-conditions to

DESIGN BY CONTRACT USING META-ASSERTIONS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

obtain the pre-condition referred to by the meta-assertion, nor anding post-conditions
with ancestor post-conditions to obtain the post-condition referred to by the meta-
assertion. Its implementation obviously depends on the base assertion language. If this
language supposes, like iContract and Eiffel, that, for example, the pre-condition written
in a method is the result of oring it with its ancestors' pre-conditions, then function Cond
has to be implemented in a way that returns this complete pre-condition. On the contrary,
if the base assertion language supposes, like Jass and ContractJava, that the pre-condition
written in a method is as it is (they generate code that check the hierarchical dependencies
of assertions at runtime), then the Cond function has to result accordingly.

The BasicM function gives all the basic-metas that appear in a given meta-assertion.
The Members function gives the method and attribute calls that appear in a meta-assertion
that correspond to given method and attribute identifiers. Finally, the ActualPar function
gives the expressions that constitute the actual parameters in the method call of a meta-
path.

The following rules give us the type of a path. They establish a relation between
elements of Path and TYPEID given a context composed of a pair of elements of
TYPEID and METHID which represent the type or class and the method within which
the path appears.

[Type1]:

ty,mth î p → type ty1 Meth(ty1,mc)=mth1

ty,mth î applyP(p,mc) → type TypeOfMeth(ty1,mth1)

[Type2]:

ty,mth î p → type ty1 Attr(ty1,atc)=attr1

ty,mth î applyP(p,atc) → type TypeOfAttr(ty1,attr1)

[Type3]:

ty,mth î ref → type TypeOfRef(ty,mth,ref)

The type of a path is the type of the tail method/attribute of the path. The form ref for the
path applies to the other possibilities.

Semantics of Meta-assertions

Next we present the semantics of MAL assuming a language AL as the base assertion
language. We only present the rules for the operational semantics of basic-metas. We do
not consider the evaluation of basic-metas which target method is not a command or
procedure, that is, which target method is a function that returns a result, for obvious
reasons. We consider that the basic-meta mc»prest is semantically equivalent to
applyP(cur(),mc)»prest.

The semantics is given operationally through a set of rules (fig. 4) that, given a
configuration that includes, among other elements, a meta-assertion and a state, gives a
boolean value. The way rules are expressed is similar to the one adopted in [Winskel92].

Meta-Assertions – A Proposal

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 49

 [basicM1]:

ActualPar(mc)={exp0 ... expm} Params(ty',mth')= {par0 ... parm}

o= Object(s(old),cur(),p) y= Object(s(young),cur(),p) ma= Cond(ty',mth',prest) [expj/parj] for j∈ [0,m]

(ty', mth', prest)∉Lm <ty',mth',ma,s[o→s(old)[cur()],y→s(young)[cur()]],Lm∪{(ty',mth',prest)}> → bool

<ty,mth, applyP(p,mc)»prest,s,Lm> → bool

where ty' is the static type of p, given by ty,mth î p →type ty' and mth' is the method id given by mth' = Meth(ty', mc)

[basicM2]:

 (ty', mth', prest) ∈Lm
<ty,mth, applyP(p,mc)»prest,s,Lm> → ⊥

where ty' is the static type of p, given by ty,mth î p →type ty' and mth' is the method id given by mth' = Meth(ty', mc)

[applyMPath]:
 MembList(ty')=MList Members(MList,ma)={memb0 ... membn}

 o= Object(s(old),cur(),mp) ma'=ma[mp/cur()][applyP(mp,membj)/membj] for j∈ [0,n]

 y= Object(s(young),cur(),mp) <ty,mth,ma,s[o→s(old)[cur()],y→s(young)[cur()]],Lm> →bool

<ty,mth, ma',s,Lm> → bool

where ty' is the type of mp
Fig. 4: Operational semantics for meta-assertions in MAL

Remember that the only command that is executed and that can change the state is the
original one – the one that contains the original meta-assertion in its contract. Throughout
the evaluation of the meta-assertions that compose the original meta-assertion, no more
commands are executed – only queries are executed and these do not change the state.

So, the objects that are of interest, in what a (non-constructor) method is concerned,
are i) the current object before the method has been executed and the same current object
after the method has been executed; ii) the objects referred to by the actual parameters
before and after method execution, insofar as they may be modified.

The objects that the method may create are of two kinds: i) local entities that are not
interesting in what concerns the evaluation of the method contract; ii) other objects that
happen to be components of the current object or of the objects referred to by the
parameters. These latter objects are already included in the objects that we referred above
as being the interesting ones.

The need for the old versions of the potentially modifiable objects has to do with the
old construct that typically all assertion languages define. This construct changes the
object to which is applied its operand path – in old p, p is applied to the object as it was
before the execution of the original command method.

DESIGN BY CONTRACT USING META-ASSERTIONS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

A state s is a pair <s(old),s(young)> where s(old), respectively s(young), represents
the part of state s that contains information about the old, respectively young, versions of
objects. These two elements of a state are mappings from objects to type-values pairs
<dynamic_type,attribute_values>. We denote by s(v)[ref] the type-values pair
corresponding to object ref in its v version. For example, s(old)[cur()] is the type-values
pair that gives the dynamic type and the values of attributes of the current object in its old
version.

We denote by Object(s,ref,p) the type-values pair <dynamic_type,attribute_values>
that represents the object that results from applying path p to object ref in state s. We
denote by s[val→ref] the state that is equal to s except in the value of ref which is equal
to val.

If the original assertion is a pre-condition, the old part of the state is irrelevant,
because pre-conditions are evaluated before method execution. If the assertion is a post-
condition then both these parts are important and are eventually not equal.

A configuration is a tuple <ty,mth,ma,s,Lm> where ty∈TYPEID, mth∈METHID,
ma∈MAssn, s is a state and Lm is a set of triples (tyn,mthn,prestn) where tyn∈TYPEID,
mthn∈METHID and prestn∈PRESTID. The initial configuration is <ty,mth,ma,s0, ∅>
where ma is a meta-assertion belonging to method mth in type ty, and that is to be
evaluated in state s0. State s0 is such that s0(young) contains information about the current
object cur() and about all the objects referred to by the method parameters as they are
at the time meta-assertion ma is evaluated. The old part of s0, s0(old), contains
information about the old versions (that is, as they were before the method was executed)
of the objects that are referred to in old constructs of assertion ma.

The rule [basicM1] says that the boolean value of a given basic-meta
applyP(p,mc)»prest in a state s is the same as the result of evaluating the prest (pre
or post) condition of method mc (with actual/formal parameters substitution) in another
state. This other state is equal to s except in its old and young versions of the current
object: these are the objects that result from evaluating path p over the old and young
versions of the current object of s.

The evaluation of the basic-metas stops with an error (rule [basicM2]) if the original
meta-assertion is circular that is, if in the process of evaluating basic-metas of assertions,
a basic-meta is reached which target method has already appeared in the evaluation
process. The control of circularity is done by keeping information about the basic-metas
that are to be evaluated. This information is kept in a list of triples, Lm, composed of: i)
the identifier of the target method of the basic-meta, ii) the type from which that method
is a member and iii) the kind – pre or post – of the basic-meta. If there already exists a
triple in the list for some of the basic-metas that must be evaluated, then the meta-
assertion is circular and its evaluation is not possible by rule [basicM2].

Rule [applyMPath] says that an assertion ma in which we syntactically substitute
applyP(mp,memb) for all its members memb, evaluates in a given state s to the same
value as the given assertion ma when evaluated in a state where the current object is the

Meta-Assertions – A Proposal

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 51

object given by mp. We denote by ma[p'/p] the assertion that is obtained from ma by
syntactically substituting path p' for all occurrences of path p. As an example, with Java
as the base programming language,

<ty,mth,x(),s',Lm > → bool implies < ty,mth,vertex(i).x(),s,Lm > → bool

where s' is identical to s except in the old and young versions of the current object. The
old, respectively young, version is the pair composed of the dynamic type of the object
returned by the vertex(i) applied to the old, respectively young, version of cur()
in s, and the values of the attributes of that same object. That is,

s' = s [Object(s(old),cur(),vertex(i)) →s(old)[cur()],

 Object(s(young),cur(),vertex(i)) →s(young)[cur()]]

The following example, where we take for the base assertion language AL the Eiffel
language, will help understanding the rules:

class CARGOFLEET feature
 ship:SHIP is do ... end
 fleet:FLEET is do ... end
 putBox(b1:BOX) is
 do ...
 ensure
 (ship.putBox(b1)»post)
 ((ship.full)implies (fleet.addShip(ship)»post))
 end
end -- class CARGOFLEET

class FLEET feature
 ...
end -- class FLEET

class SHIP feature
 numberBoxes:INTEGER is do ... end
 box(i:INTEGER):BOX is do ... end
 full:BOOLEAN is do ... end
 putBox(boxToPut:BOX) is
 do ...
 ensure
 (old full) implies numberBoxes=1
 (not old full) implies
 (numberBoxes=old numberBoxes+1)
 equal(box(numberBoxes),boxToPut)
 end
end -- class SHIP

DESIGN BY CONTRACT USING META-ASSERTIONS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Suppose we want to evaluate the first basic-meta of the post-condition of the putBox
method of class CARGOFLEET which is (ship.putBox(b1)»post).

<CARGOFLEET, putBox, applyP(ship,putBox(b1))»post, s, Lm> → ?

where s has information about the instance of class CARGOFLEET to which was applied
the method putBox(b1) and also about object b1 of type BOX. The result of this
evaluation, by rule [basicM1], is the same as we get by evaluating the meta-assertion
(notice the substitution of parameters):

(old full) implies numberBoxes=1
(not old full) implies (numberBoxes=old numberBoxes+1)
equal(box(numberBoxes),b1)

in a state where the current object is not a CARGOFLEET object as it was before but,
instead, the SHIP object that results from applying the ship method to that former
current object.

4 EXPANSION OF META-ASSERTIONS

If contracts are to be checked at runtime, meta-assertions must be expanded so that the
monitoring code generation tool that is to be used can generate runtime checking code
from simple assertions in the base assertion language. We propose a process of expansion
that abstracts away from the details of the base assertion and programming languages.
This is achieved by using the functions and sets of identifiers defined in the previous
section for the semantics of meta-assertions.

The rules that define the expansion of a meta-assertion into a simple assertion are
presented in figure 5. Notice that the detailed syntax of a meta-assertion ma is not
relevant here. The important thing here is that simple-assertions are substituted for basic-
metas within a meta-assertion. The structure of the meta-assertion is kept the same (if for
example ma is of the form bm1andbm2 then the simple assertion that results from its
expansion is also of the form a1anda2 where a1 and a2 are the expansions of bm1 and
bm2, respectively).

Expansion of Meta-Assertions

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53

[Expand1]:

BasicM(ma)={bm0 ... bmn} where bmj= applyP(pj,mcj)»prestj for j∈ [0,n]

ty,mth î pj →type tyj Meth(tyj, mcj)= mthj (tyj, mthj, prestj)∉Lm for all j∈ [0,n]

tyj mthj î bmj →lowM maj Lm∪{(tyj, mthj, prestj)},ty,mth î maj →E aj

Lm,ty,mth î ma → E ma[a0/bm0 ... an/bmn]

[Expand2]:

BasicM(ma)={bm0 ... bmn} where bmj= applyP(pj,mcj)»prestj for j∈ [0,n]

ty,mth î pj →type tyj Meth(tyj, mcj)= mthj (tyj, mthj, prestj) ∈Lm for some j∈ [0,n]

Lm,ty,mth î ma → E ⊥

[LowerMeta]:

ActualPar(mc)={exp0 ... expm} Params(ty',mth')= {par0 ... parm} Cond(ty',mth',prest) = ma

ma'=ma[expj/parj] for j∈ [0,m] MembList(ty')=MList Members(MList,ma')= {mc0 ... mcn atc0 ... atcl}

ty' mth' î applyP(p,mc)»prest → lowM ma' [p/cur()] [applyP(p,mcj)/mcj] for j∈ [0,n] [applyP(p,atcj)/atcj] for j∈ [0,l]

 [CurPath]:

î applyP(cur(),mc)»prest →E a

î mc»prest →E a

Fig. 5: Rules for the expansion of meta-assertions

For a given meta-assertion ma, the [Expand1] rule gives a meta-assertion that is equal to
ma with all its basic-metas expanded. The substitution ma[a0/bm0 ... an/bmn] takes into
account the renaming of logical variables (for example when there are two quantifiers
that use the same logical control variable). These Expand rules prevent circular meta-
assertions, as was done in rules of fig. 4, by keeping information about the basic-metas
that are to be expanded. If there already exists a triple in the list for some of the basic-
metas that must be expanded, then the meta-assertion is circular and its expansion is not
possible by the [Expand2] rule.

In the [Expand1] rule several applications of the [LowerMeta] rule are needed in
order to obtain the meta-assertions that result from the basic-metas that have to be
expanded. These meta-assertions have to be expanded because they may themselves
contain basic-metas.

The meta-assertion that results from the application of the [LowerMeta] rule over a
basic-meta applyP(p,mc)»prest (which we call generating basic-meta) is obtained by
taking the post or pre-condition – depending on prest – of its target method, say Cond,

DESIGN BY CONTRACT USING META-ASSERTIONS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

and transforming it. This transformation is done by substituting in Cond all actual
parameters for formal parameters and then applying the path p to all the method and
attribute calls – the members – that appear in this modified Cond. Moreover, all
references to cur() change to p.

In the CARGOFLEET example above, when expanding the meta-assertion of the
putBox method of class CARGOFLEET, we would obtain the basic-metas:
ship.putBox(b1)»post and fleet.addShip(ship)»post.

When applying the [LowerMeta] rule to the first one, the post-condition of the
putBox method of class SHIP would be taken and transformed as mentioned, that is,
the following meta-assertion would be obtained:

(old ship.full) implies ship.numberBoxes=1 and

(not old ship.full) implies

 (ship.numberBoxes=old ship.numberBoxes+1)

and equal(ship.box(ship.numberBoxes),b1)

There was a substitution of actual parameter b1 for the formal parameter boxToPut.
All calls to members of class SHIP – the type of the path of the generating basic-meta –
were applied that path, that is, ship. In this case the member calls are only method calls:
numberBoxes, full and box.

The expansion of a meta-assertion preserves grammatical correctness, that is, given
ma∈MAssn grammatically correct, the simple assertion a∈Assn in ∅,ty,mth î ma →E a
where ma appears in some of the assertions of method mth's contract in type ty, is
grammatically correct. The proof of this result appears in [Nunes02].

We further prove the soundness of the expansion by proving that, for all meta-
assertion ma that appears in some of the assertions of method mth's contract in type ty, all
state s and boolean value bool, if ma evaluates to bool in state s so does its expansion;
and if the evaluation diverges, so does the evaluation of ma's expansion. Furthermore, if
the evaluation of ma stops in error, so does its expansion.

Proposition (SOUNDNESS).
The expansion of a meta-assertion is sound with respect to the semantics, that is,

given ma∈MAssn that appears in some of the assertions of method mth's contract in type
ty,

1. <ty,mth,ma,s,Lm>→bool implies <ty,mth,a,s,Lm> → bool
2. <ty,mth,ma,s,Lm> diverges implies <ty,mth,a,s,Lm> diverges
3. <ty,mth,ma,s,Lm>→⊥ implies Lm,ty,mth î ma → E⊥

where the simple assertion a∈Assn is such that Lm,ty,mth î ma → E a that is, a is the
expansion of ma. The proof of this result appears in [Nunes02].

Conclusions and Further Work

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

5 CONCLUSIONS AND FURTHER WORK

We presented an approach to design by contract that promotes low coupling and
encapsulation in contract assertions: applying the general responsibility assignment
pattern for design by contract "Don't talk about strangers" when building pre and post-
conditions. This concern revealed a lack of expressive power in existing assertion
languages, which we tried to fill by introducing the concept of meta-assertion. These
meta-assertions extend some base assertion language, and allow the writing of very
simple yet very expressive assertions. If monitoring is a goal, these can be expanded into
simple-assertions of the base assertion language and can be monitored by existing tools,
while maintaining total encapsulation in what meta assertions are concerned, and almost
total encapsulation in what the corresponding expanded assertions are concerned
(depending on the re-compilation to generate the new simple assertions).

There are some aspects of contracts that were not studied in what meta-assertions are
concerned, as for example, assertions that include the super or Precursor reference, frame
conditions (for example MOD in COLD-1, assignable in JML, changeonly in Jass), and
others, which should be resolved if we want the expansion of meta-assertions to be
possible when applied to a real assertion language.

Inheritance was a concern in the semantics and in the expansion of meta-assertions
insofar as the pre and post-conditions that are picked up to be evaluated in figure 4 and to
be expanded in figure 5 result from function Cond which, as explained, returns the
complete assertion of the method (that is, if the method is redefining one of its
ascendants, its assertions already reflect ascendant assertions). However, the semantic
rules and the expansion rules ignore the polymorphism of object references in the
definition of the supplier assertions that are picked up to be evaluated or to be expanded.
These are the pre and post-conditions of target methods of basic-metas concerning the
static type of the path to which they are applied (see rules [Expand1] and [BasicM1]). We
are studying the pros and cons (against other solutions) of this approach in the monitoring
of polymorphic entities.

REFERENCES

[Bartezko01] D.Bartezko, C.Fischer, M.Moller and H.Wehrheim: Jass-Java with
assertions, Workshop on RunTime Verification, 2001.

[Findler01] R.B.Findler and M.Felleisen, Contract Soundness for Object-Oriented
Languages, OOPSLA 2001.

[Gamma95] E.Gamma, R.Helm, R.Johnson and J.Vlissides, Design Patterns, Addison-
Wesley 1995.

DESIGN BY CONTRACT USING META-ASSERTIONS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

[Guttag85] J.V.Guttag, J.J.Horning and J.M.Wing, The Larch Family of Specification
Languages, IEEE Software, 2(5), pp.24-36, Sept. 1985.

[Havelund00] K. Havelund and T. Pressburger, Model Checking Java Programs Using
Java PathFinder, International Journal on Software Tools for Technology
Transfer, STTT, 2(4) April 2000.

[iContract] iContract HomePage. http://www.reliable-
systems.com/tools/iContract/iContract.htm.

[Jacobs01] B.Jacobs and E.Poll, A Logic for the Java Modeling Language JML, in: H.
Hussmann (ed.), Fundamental Approaches to Software Engineering (FASE),
Springer LNCS 2029, pp.284-299, 2001.

[Jonkers91] H. B. M. Jonkers, Upgrading the Pre- and Postcondition Technique, VDM
Europe (1), pp.428-456, 1991.

[Leavens00] G.T. Leavens, K.R.M. Leino, E. Poll, C. Ruby, and B. Jacobs, JML:
notations and tools supporting detailed design in Java, OOPSLA 2000
Companion.

[Larman98] C. Larman, Applying UML and Patterns, Prentice-Hall PTR, ISBN 0-13-
748880-7, 1998.

[Meyer97] B.Meyer, Object-Oriented Software Construction, 2nd edition, , Prentice-Hall
PTR, ISBN 0-13-629155-4, 1997.

[Nunes02] I.Nunes, Design by Contract Using Meta-Assertions, Technical Report
DI/FCUL, TR-02-7. Dept. of Computer Science, Lisbon Univ. July 2002.

 [Van der Berg01] J.Van der Berg and B.Jacobs, The LOOP compiler for Java and JML,
T. Margaria and W. Yi (eds.), Tools and Algorithms for the Construction and
Analysis of Software (TACAS), Springer LNCS 2031, pp.299—312, 2001.

[Winskel92] G.Winskel, The Formal Semantics of Programming Languages, MIT Press
1992.

About the author
Isabel Nunes is an Assistant Professor at the University of Lisbon, Portugal. Her interests
are in the area of program specification and verification and OO modeling and
programming. She is also interested in methods for teaching object oriented concepts.
She can be reached at in@di.fc.ul.pt.

http://www.reliable-systems.com/tools/iContract/iContract.htm
mailto:in@di.fc.ul.pt

