
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 3

Special issue: TOOLS USA 2002 proceedings

Cite this article as follows: Andreas Rausch: “Design by Contract” + “Component Ware” = “Design
by Signed Contract”, in Journal of Object Technology, vol. 1, no. 3, Special issue: TOOLS USA
2002 proceedings, pages 19-36. http://www.jot.fm/issues/issue_2002_08/article2

“Design by Contract” + “Componentware” =
“Design by Signed Contract”1

Andreas Rausch, Technische Universität München, Germany

Abstract
The main goal of "Design by Contract" is to improve correctness and robustness of
software systems. For this purpose, the interfaces of classes or modules are
augmented with precise specifications containing assertions. By means of these
assertions, a supplier of a service imposes contractual obligations that his clients have
to fulfill.
”Componentware” introduces a new software development paradigm. Systems are no
longer implemented from scratch, but glued together from existing components. In this
paper, we show why and how the concepts of pure design by contract fail in the context
of component-based system development. In order to leverage the vision of design by
contract to its full extent for component-based system development, we introduce the
new concept of “Design by Signed Contract”.
Signed contracts enable us to specify not only what a supplier provides to its
environment, but also what a client needs from its environment. Signed contracts
guarantee that client needs are satisfied by corresponding properties provided by
suppliers. We show how signed contracts can be used for a more precise specification
of the composition of component-based systems and a more formal verification of the
correctness of these systems. Thereby, software system defects can already be
detected and prevented at the specification level.

1 This work originates from the research project ZEN – Center for Technology, Methodology and
Management of Software & Systems Development – a part of Bayerischer Forschungsverbund Software-
Engineering (FORSOFT), supported by the Bayerische Forschungsstiftung.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_08/article2

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

1 INTRODUCTION

The idea of using assertions to check the correctness of programs has been born a long
time ago. According to Tony Hoare, in the 1950’s none other than Alan Turing already
proposed to make a number of assertions from which the correctness of a program can be
checked [Hoare81]. In this context the correctness of a program means that the program
is consistent with its specification. The well-known notion of a Hoare triple provides a
simple mathematical notation for reasoning about the correctness of programs [Hoare69]:

{ } { }P C Q
In this notation, P and Q are predicates (or functions from the state space to the boolean
domain) and C is a command or program. The meaning of the Hoare triple is that any
terminating execution of C , starting in a state where P holds (pre-condition), will
terminate in a state where Q holds (post-condition). This meaning of correctness is also
known as partial correctness.

“Design by Contract” (DbC), introduced by Bertrand Meyer in 1987 [Meyer87], was
one of the next milestones in the evolution of the idea of using assertions to improve the
correctness and robustness of software systems. In DbC, interfaces of classes or modules
are governed by precise specifications containing assertions. In the notion of DbC, these
assertions define a contract between the client and the supplier of a service provided by
an interface.

Three different kinds of assertions can be used: pre-conditions, post-conditions and
invariants. A pre-condition states the properties that must hold before an operation is
called. A post-condition describes the properties that are guaranteed after the operation is
executed. And finally, an invariant is a condition that must be preserved by all operations
of a certain instance.

According to DbC, these assertions are specified within the program code. Whenever
the program is executed, the assertions can be validated. In case of violated assertions
exceptions are thrown. Thus, executing test cases on the system as a whole helps you
identifying, analyzing, and finally eliminating system defects.

Nowadays, as systems become more and more complex, component-based software
development (CBSD) is to a greater extent applied in industry. CBSD changes the
development paradigm – components are for composition. Systems are no longer
implemented from scratch, but glued together from existing components.

In order to leverage CBSD to build correct programs we need sophisticated
specification and high level programming techniques. On the one hand, we have to
specify and realize software components as self-contained units of deployment. On the
other hand, we have to specify the composition of those components to component-based
systems.

Introduction

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 21

As it turns out, the current concepts of DbC are not sufficiently powerful for these
issues. The main reason for this is that the concept of a contract in DbC is actually not a
contract, but only a service supplier's “offer” to potential clients. The supplier’s “needs”
are not completely specified, as they are seen as “implementation details”. But in the
context of CBSD a component is a self-contained unit of deployment. Therefore, you
have to make the needs of a component visible. They must not be hidden as an
implementation detail.

In this paper, we show how the vision of DbC can be leveraged to its full extent for
component-based systems. For this purpose, in Section 2 we provide a small working
example that illustrates the problem of the existing notion of contracts in DbC. Then in
Section 3, we enhance the specification techniques of DbC towards “Design by Signed
Contract” and show how the problems with pure DbC can be avoided. In Section 4, we
finally provide the theoretical foundation of the proposed concepts. A short conclusion
and a section about related work rounds up the paper.

2 “DESIGN BY CONTRACT” – APPLIED

A small toy example serves to clarify the general problem of applying DbC in the context
of CBSD. Consider a simple production planning system (PPS). The PPS has to schedule
and optimize the assignment of jobs to corresponding robots handling these jobs. Each
robot can treat only a single job at any time. Each job has to be handled by a single robot.
Overlapping jobs assigned to the same robot cause conflicts. The major goal of the PPS is
to assign all jobs to robots without a conflict and to minimize the required production
time.
As we apply a component-based approach, the PPS is built from existing components.
The PPS contains two components: Job and Robot2.

The important parts of the specification and implementation of our two components
Job and Robot are shown in Figure 1 and Figure 2. The notation we use imitates the one
known from DbC and Eiffel [Meyer97]. Keywords are written in capital letters.

Job contains the attribute assigned which refers to the robot handling this job. On
the other hand, Robot has the attribute scheduled which refers to a set of jobs it has to
handle. Both Job and Robot provide the method hasConflict() to calculate whether
they cause a conflict or not. Corresponding to DbC, each method description consists of
three parts: The first covers the pre-conditions of the method, which is not required in this
example. The second includes the implementation of the method starting with the
keyword DO. The third – with keyword ENSURE – contains the post-condition of the
method.

2 Although Job and Robot are more objects than components, it keeps the example small but expressive
enough to illustrate the problem in general.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

COMPONENT Job
 assigned : Robot
 start : Time
 end : Time
 INVARIANT interval_non_negative: start <= end
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL j IN assigned.scheduled LOOP
 RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND
 (start <= j.end) AND (j.start <= end))
 END
 ENSURE
 RESULT = EXISTS j IN assigned.scheduled WITH
 (j NOT EQUALS CURRENT) AND (start <= j.end) AND
 (j.start <= end)
 END
END

Fig. 1: First DbC version of component Job

The post-condition of the method hasConflict() of the component Job
determines whether a job causes a conflict or not. A conflict appears if the assigned robot
is scheduled for another job that overlaps with the current one. The implementation of the
method is a simple translation of the post-condition into an operational form.

COMPONENT Robot
 scheduled : Set(Job)
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL j IN scheduled LOOP
 RESULT := RESULT OR j.hasConflict()
 END
 ENSURE
 RESULT = EXISTS j,k IN scheduled WITH
 (j NOT EQUALS k) AND (j.start <= k.end) AND
 (k.start <= j.end)
 END
END

Fig. 2: DbC version of component Robot

The post-condition of the method hasConflict() of the component Robot calculates
whether the robot has a conflict or not. A conflict appears if at least two scheduled jobs of
the robot overlap. For the corresponding implementation the already existing method of

“DESIGN BY CONTRACT” – APPLIED

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 23

the component Job is (re-)used. For reasons of reuse and encapsulation the presented
solution seems absolutely reasonable.

Now, we can glue these two components together to implement and deliver the PPS
to our customers. Once a system is shipped it usually takes only a couple of months until
new requirements come up. In our particular case, we assume that our customers want the
PPS to schedule jobs not only for a single robot, but also for a certain number of robots –
the jobs they want to manage get more complex. Therefore a new version of the
component Job has to be specified, implemented, and finally used within the PPS.

Figure 3 shows this new version of this component. The modified parts are
highlighted in gray color. A job can now be assigned to a set of robots with respect to the
number of required robots to handle the job. The method hasConflict() has also been
modified. Now, a job causes a conflict if there is another job assigned to one of the robots
the current job is assigned to, which overlaps with the current job.

The new version of the component Job fulfills the required new features. Moreover,
it still fits together with the already existing component Robot. Probably the new version
of the PPS will be again glued together, compiled, tested and eventually shipped to
customers.

COMPONENT Job
 assigned : Set(Robot)
 numberOfRequiredRobots : Integer
 start : Time
 end : Time
 INVARIANT interval_non_negative: start <= end
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL r IN assigned LOOP
 FORALL j IN r.scheduled LOOP
 RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND
 (start <= j.end) AND (j.start <= end))
 END
 END
 ENSURE
 RESULT = EXISTS r IN assigned WITH
 EXISTS j IN r.scheduled WITH
 (j NOT EQUALS CURRENT) AND (start <= j.end) AND
 (j.start <= end)
 END
END

Fig. 3: Second DbC version of component Job

Unfortunately the new version of the PPS has a defect: A robot is expected to signal a
conflict if at least two of its scheduled jobs overlap, corresponding to the post-condition
of hasConflict() in Figure 2. However, the implementation of the Robot‘s method

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

hasConflict() (re-)uses the Job’s method hasConflict() which has been modified
(see Figure 2). Hence, the behavior of the Robot’s method hasConflict() has also
been changed. A conflict for a robot R1 may now also be signaled if a job J1 scheduled
for robot R1 and robot R2 overlaps with a job J2 assigned to robot R2. This behavior
violates the corresponding post-condition of the Robot‘s method hasConflict().

The component Robot is no longer correct in the context of the new version of the
PPS, although it has not been modified. The implementation is not consistent with the
specification (see Figure 2). The resulting defect may cause fatal faults, as for instance
the optimizing algorithm of the PPS relies on a correct calculation of the conflicts of jobs
and robots. Hence, the core functionality of the PPS is no longer correct.

Of course, this defect could have been detected during the integration test of the new
version of the PPS. In order to detect it, a corresponding test case containing proper test
data must be available and executed. Usually, new test cases including new test data are
only specified and implemented for new functionality. Existing functionality is typically
tested with existing test cases in so-called regression tests. As the discussed defect only
appears if existing functionality is executed with new test data, it is quite likely that it will
not be detected during integration test.

To sum up, applied CBSD means that systems are built from existing components.
These components are self-contained units of deployment, but they have to work together
to realize the functionality of the system as a whole. Correspondingly, the components of
a component-based system rely on each other. The behavior of a single component
depends on the “surrounding” components within the component-based system. It
depends on the context in which the component is embedded. Hence, the correctness of a
component-based system depends on an appropriate “component-mixture”.

For instance, if a single component is correct but does not fulfill the needs of the
others (like the modified Job component), the behavior of other components depending
on it may be influenced unintentionally, resulting in software system defects.

Using the concepts of DbC in the way they are used in today’s software engineering
practice, namely for specification, programming, and testing issues, it is difficult to
prevent those system defects. To detect these defects one has to either inspect the
implementation or realize and execute a failure-producing system test scenario.

Both options are unacceptable in CBSD. Components are units of deployment and
may be delivered by third parties. As you do not have access to the implementation of all
components, you cannot inspect all of them. Therefore you still need to realize a
complete set of system test scenarios for the system integration test, as the use of correct
components does not enforce the correctness of the component-based system built from
these components. But as we all know, one cannot identify all required test scenarios.
Thus, one expected benefit of CBSD will not be achieved: improvement of system
quality by (re-)using quality proven components.

The main reason for this is that DbC “only” guarantees local correctness at the level
of objects, classes, or components, but it does not guarantee global correctness when

“DESIGN BY CONTRACT” – APPLIED

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 25

components are used and combined together. Therefore we have to provide a means for
explicit specification of the dependencies between the components of a component-based
system.

In the next section we will illustrate – based on our working example – how the
concepts of DbC can be improved towards signed contracts which are needed for
successful CBSD.

3 DESIGN BY SIGNED CONTRACT

Before we can introduce our new improved specification technique for CBSD, we need a
clear understanding of the notion of a component and of CBSD. Instead of presenting our
own, we use Clemens Szyperski’s definition of a component, which is widely accepted:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.”
(Quotation from [Szype97], page 34)

These properties have several implications. For a component to be independently
deployable, the component needs to be well separated from its environment and from
other components. It needs to be sufficiently self-contained. A clear specification of what
a component provides and needs is required. This specification has to be delivered
together with the component by the component vendor.

The existence of such a specification is crucial for a component to be composable
with other components by a third party, the component user. The component user needs
an integrated but decoupled specification technique to explicitly describe the
collaborations between the components under composition.

We need two kinds of specification techniques for CBSD:
• a self-contained component island specification provided by the component

vendor and
• a component composition specification elaborated by the component user.

As shown in the previous section, the concepts of DbC are currently not sufficiently
powerful to express the required component island specifications and component
composition specifications. Based on our working example we show in the following
how the concepts of DbC can be extended with respect to the requirements of CBSD.

For each component a component island specification has to exist. This island
specification is structured in two parts. The first contains the provided properties. In our
example this section starts with the keyword PROVIDE. The PROVIDE part is identical
with the specifications well known from DbC that have been shown in the previous
section. It specifies the properties the component provides to its environment, assuming
the environment fulfills the second part, the NEED part.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

The second part of the specification captures the needed properties of the
component, therefore we use the keyword NEED. The NEED part is syntactically identical
to the PROVIDE part. It also contains a complete behavior specification based on pre-
conditions, post-conditions, and invariants. In contrast to the PROVIDE part it specifies
behavior the component expects from its environment. Hence, the NEED part will never
be implemented, instead the needed behavior will be mapped to a provider-component
during system compostion.

COMPONENT Job
 PROVIDE
 assigned : n_Robot
 start : Time
 end : Time
 INVARIANT interval_non_negative: start <= end
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL j IN assigned.n_scheduled LOOP
 RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND
 (start <= j.end) AND (j.start <= end))
 END
 ENSURE
 RESULT = EXISTS j IN assigned.scheduled WITH
 (j NOT EQUALS CURRENT) AND (start <= j.end) AND
 (j.start <= end)
 END
 END
 NEED
 .
 .
 COMPONENT n_Robot
 n_scheduled : Set(Job)
 END
END

Fig. 4: First version of component island specification of Job

Figure 4 contains the component island specification of the component Job. The
PROVIDE part of the component island specification is almost identical with the one
shown in Figure 1. Only some of the identifiers have been exchanged. Instead,
corresponding identifiers from the NEED part of the specification have been used.

For reasons of uniformity and clarity all needed properties of a component start with
the prefix “n_”. As shown in Figure 4 the component Job needs a component named
n_Robot that has an attribute named n_scheduled which contains a set of jobs.

Design by Signed Contract

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 27

Note, a component island specification is a complete and self-contained
specification, all used identifiers are defined. An implementation of such a specification
can be independently tested and verified, an important feature for successful CBSD.

Figure 5 shows the corresponding component island specification of the component
Robot. Again, this specification consists of the two parts PROVIDE and NEED. The
PROVIDE part is similar to the one shown in Figure 2. The additional NEED part describes
the required component n_Job including all needed properties.

COMPONENT Robot
 PROVIDE
 scheduled : Set(n_Job)
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL j IN scheduled LOOP
 RESULT := RESULT OR j.n_hasConflict()
 END
 ENSURE
 RESULT = EXISTS j,k IN scheduled WITH
 (j NOT EQUALS k) AND (j.n_start <= k.n_end) AND
 (k.n_start <= j.n_end)
 END
 END
 NEED
 .
 .
 COMPONENT n_Job
 n_assigned : Robot
 n_start : Time
 n_end : Time
 INVARIANT n_interval_non_negative: n_start <= n_end
 n_hasConflict() : Boolean
 ENSURE
 RESULT = EXISTS j IN n_assigned.scheduled WITH
 (j NOT EQUALS CURRENT) AND (n_start <=
 j.n_end) AND (j.n_start <= n_end)
 END
 END
END

Fig. 5: Component island specification of Robot

Once these component island specifications are finished, the components can be
implemented, tested, and shipped to component users. Then, component users glue these
components together to implement their envisioned system.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Therefore, component users need a specialized component composition specification
technique. This specification technique has to enable component users to explicitly state
the behavioral dependencies between the components under composition. This means
needed properties of all components have to be mapped to provided properties of other
components.

In our example the component user glues the components Job and Robot together to
realize the PPS. Therefore, he has to map the needed properties of our two components to
corresponding provided properties. For instance in Figure 6, which contains the
component composition specification of the PPS, the needed method n_hasConflict()
of the needed component n_Job is mapped to the provided method hasConflict() of
the provided component Job (see gray colored line in Figure 6).

SIGNED CONTRACT BETWEEN Component Job, Robot
 MAPPING Job
 n_Robot -> Robot
 n_Robot.n_scheduled -> Robot.scheduled
 END
 MAPPING Robot
 n_Job -> Job
 n_Job.n_assigned -> Job.assigned
 n_Job.n_start -> Job.start
 n_Job.n_end -> Job.end
 n_Job.n_interval_non_negative ->
 Job.interval_non_negative
 n_Job.n_hasConflict() -> Job.hasConflict()
 END

Fig. 6: Component composition – signed contract between Job and Robot

Note, an important feature of the proposed specification technique is that the NEED part
covers not only the syntax but also behavior – the NEED part is more than an “import”
statement in common programming languages. For instance, the specification includes a
post-condition for the needed method n_hasConflict() specifying the behavior of this
required method (see Figure 5). Accordingly, the correctnes of the mapping does not
require syntactical or logical equality of required and provided pre- and post-conditions,
but “merely” suitable implications (see Section 4).

Hence, a component composition specification allows the component user to
explicitly state the behavioral dependencies between the components under composition.
Such a specification forms a so-called signed contract. Thereby the needed properties of
all components of a system are mapped to provided properties of other components of
this system. These signed contracts enable tools or at least developers to check and
validate at the specification level whether all needed properties of the used components
are fulfilled or not.

Consequently, a component-based system is correct if all components are correct and
the signed contract of the system is fulfilled. If the signed contract is not fulfilled, at least
one component may cause failures leading to system failures. Using signed contracts can
help detecting and avoiding system defects at the specification level in advance.

Design by Signed Contract

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 29

For instance in our example from the previous section the method hasConflict()
of the component Job has been modified. Figure 7 shows the corresponding new version
of the component island specification of the component Job. (Re-)checking the signed
contract from Figure 6 by a tool or a developer shows that this method is used within the
component Robot with the synonym n_hasConflict(). The post-conditions of the
needed method n_hasConflict() and the provided method hasConflict() are no
longer logically equal. The signed contract is broken. The whole system is not correct any
more. Applied “Design by Signed Contract” helps you identifying those defects at the
specification level and thus preventing system failures.

COMPONENT Job
 PROVIDE
 assigned : Set(n_Robot)
 numberOfRequiredRobots : Integer
 start : Time
 end : Time
 INVARIANT interval_non_negative: start <= end
 .
 .
 hasConflict() : Boolean
 DO
 RESULT := False
 FORALL r IN assigned LOOP
 FORALL j IN r.n_scheduled LOOP
 RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND
 (start <= j.end) AND (j.start <= end))
 END
 END
 ENSURE
 RESULT = EXISTS r IN assigned WITH
 EXISTS j IN r.n_scheduled WITH
 (j NOT EQUALS CURRENT) AND (start <= j.end) AND
 (j.start <= end)
 END
 END
 NEED
 .
 .
 COMPONENT n_Robot
 n_scheduled : Set(Job)
 END
END

Fig. 7: Second version component island specification of Job

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

4 FORMAL FOUNDATION

To apply or integrate the presented specification techniques into existing approaches a
precise understanding of the basic concepts and notations is required. For these reasons,
in this section we elaborate a formal foundation of the concepts introduced in the
previous section.

Such a formal foundation usual incorporates two levels: The instance level
represents the individual operational units of a component-based system that determine
its overall behavior. The specification level contains a normalized abstract description of
a subset of common instances with similar properties.

int i =7
String s = "Hello"

<message>

<message>

int i =5

time t1 time t2
Fig. 8: Instance Level of the Formal Foundation

Although the instance level is the reliable semantic foundation of the specification level,
we cannot discuss the complete mathematical definitions for the constituents of a
component-based system at runtime – the instance level. This is beyond the scope of this
article, as the resulting formulae are rather lengthy.

However, for the formal foundation of the specification level you still need at least a
small number of basic concepts from the instance level. In [Rausc00] and [Rausc01] we
have already presented a complete formal model for the instance level. In this model we
distinguish between system, component, interface, connection, variable, message, and
value instances, as shown in Figure 8.

In order to uniquely address these basic elements of the instance level we introduce
the infinite set INSTANCE of all instances:

{ }
defINSTANCE

SYSTEM COMPONENT INTERFACE ATTRIBUTE CONNECTION MESSAGE VALUE

=

∪ ∪ ∪ ∪ ∪ ∪

Formal Foundation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 31

The formal foundation in [Rausc01] is powerful enough to handle the most difficult
aspects of component-based systems: dynamically changing structures, a shared global
state, and at last mandatory call-backs. For this purpose the behavior of a component-
based system is separated into three essential parts:

• Structural behavior captures the changes in the system structure, including the
creation or deletion of instances and changes in the connection as well as
aggregation structure:

{ }{ }

= →

= →

= →

= → ∈

def

def

def

def

ALIVE INSTANCE BOOLEAN
ASSIGNMENT INTERFACE COMPONENT
ALLOCATION ATTRIBUTE INTERFACE

CONNECTS CONNECTION i, j i, j INTERFACE

• Variable valuations represent the local and global data space of the system. This
enables us to model a shared global state:

defVALUATION ATTRIBUTE VALUE= →
• Component communication describes message-based asynchronous interaction

between components. Thus, we can specify mandatory call-backs without
problems.

*
defEVALUATION INTERFACE MESSAGE= → 3

As illustrated in Figure 8, the behavior of a component-based system is given by an
infinte sequence of finite subsets of the set SNAPSHOT , which covers any possible system
snapshot.

= × × × × ×defSNAPSHOT ALIVE ASSIGNMENT ALLOCATION CONNECTS VALUATION EVALUATION

Finally, as shown in [Rausc01] this system behavior can be derived from the behavior
functions of all components. The behavior function of a single component is a simple
transition function that takes a snapshot and calculates the following snapshot:

behavior : SNAPSHOT SNAPSHOT→
Based on this formal foundation of the instance level we can provide a precise definition
of the sepcification level. A specifier at the specification level models all common
properties of a set of instances in an abstract way. Let SPECIFIER be the infinite set of
all specifiers, as for instance system specifications, component specifications, interface
specifications, attribute specifications, and method specifications.

The function specified assigns to each instance its corresponding specifier. This
function models the semantic bridge from the instance level to the specification level and
vice versa:

specified : INSTANCE SP ECIFIER®
For the formal foundation of the specifiers we use the infinite set vTERM of all logical
expressions with a single free variable v . For instance, one specified property of a system
could be: All instances of the attribute At t ributeWithConstantValue should always have

3 Whereas *MESSAGE denotes any finite sequence of messages.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

the value 5 . This specification would be formulated by the following logical expression
vt TERMÎ :

() ()v va At t ribute . specified a At t ributeWithConstantValue a,5 valuat ion" Î = Þ Î

where vAt t ribute is the set of attribute instances in an arbitrary component-based system
v and vvaluat ion assigns values to attribute instances in the system v .

An instance s INSTANCEÎ , particularly a system during runtime, is a valid
interpretation of such a vt TERMÎ if the predicate []t s holds:

[] v. . : TERM INSTANCE BOOLEAN´ ®
This function is the foundation of our semantics. It defines the set of predicates we use in
our specifications, similar to the predicates used in Hoare triples. They allow us to
determine whether an instance is a correct implementation of a specification or not.

«component»
A

 Aprovide sp  Aneed sp

Asp SPECIFIER�

«component»
B

 Bprovide sp  Bneed sp

Bsp SP ECIFIER�

Contract

xxxx xxxxx x xxxxxx

Fig. 9: Formal Foundation of Design by Signed Contract

To each specifier, especially to each component specification, we can now assign a set of
provided properties and a set of needed properties4:

4 ()AR denotes the powerset of the set A .

Formal Foundation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 33

()

()

v

v

provide : SPECIFIER TERM

need : SPECIFIER TERM

® R

® R

These sets correspond to the NEED and PROVIDE part of the specifications presented in
the previous section (see Figure 9). The function ()need spec models all needed properties
of a certain specifier spec SPECIFIERÎ . Are all properties valid the specifier spec
provides the properties described by ()provide spec . Hence, if an instance s INSTANCEÎ
is a correct implementation of a given specification spec SPECIFIERÎ , the following
condition must hold:

()
()()[] []

n need spec
p provide spec . n s p s

" Î
" Î Ù Þ

Based on these two functions provide and need we are able to explicitly model the
dependencies between the various specifiers used within a specification. A signed
contract Contract CONTRACTÍ maps a set of specified needed properties of a certain
specifier to a set of specified provided properties of another specifier:

v v
defCONTRACT SP ECIFIER TERM SP ECIFIER TERM= ´ ´ ´

For a given signed contract the predicate fulfilled denotes whether the contract is valid for
a specific specifier or not:

() ()fulfilled : SP ECIFIER CONTRACT SP ECIFIER BOOLEAN´ R ´ R ®

Let Contract CONTRACTÍ be a given signed contract and Specifier SPECIFIERÍ a set of
specifiers used within a specification, then the signed contract holds for the
specifier SpecifierÎ if all needed properties of specifier in the contract, are assigned to
provided properties of other specifiers, and finally the needed and provided properties are
logical equal.

() ()

() () ()
deffulfilled specifier, Cont ract, Specifier n need specifier

specifier, n, x, p Cont ract . x Specifier p provide x holds p, n

Û " Î Þ

$ Î Î Ù Î Ù

The predicate holds thereby denotes the logical equivalence of two properties. This
predicate is valid, if the provided property implies the needed property with respect to all
possible interpretations with an arbitrary instance s INSTANCEÎ :

v vholds : TERM TERM BOOLEAN´ ®
() [] []()defholds p, n p s n sÛ Þ

Whenever a component-based system is glued together from components the developer
or a tool have to validate whether the signed contract of the system is fulfilled for all used
components. Still not satisfied needed properties of components can be identified. Thus
system defects may be detected and prevented in advance. These not satisfied needed
properties have to be mapped to provided properties of other components.

Note, the correctness of this mapping is not calculable by a tool in general. To
accomplish this the tool would have to calculate the predicate holds . But the number of
instances for which the tool would have to prove the implication of properties is infinite.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

However, holds can be proven with the use of specialized tools that require human
interactions, e.g. theorem proving techniques, but this is beyond the scope of this article.

5 CONCLUSION

“Design by Contract” (DbC) is a well-known applied approach for the specification, the
programming, and the testing of object-oriented systems. Component-based software
development (CBSD) is a new paradigm. Systems are no longer implemented, they are
glued together from existing components, which are self-contained units of deployment.

In our working example we have shown that applying the pure concepts of DbC fails
in the context of CBSD. The main reason for this is that the components of a component-
based system rely on each other, but one cannot explicitly specify the dependencies
between these components with the concepts of DbC. Hence, to validate the correctness
of the system as a whole, one has either to inspect all component implementations or to
design and execute all failure-producing test scenarios. Both options are not possible in
CBSD.

For these reasons we have elaborated a new sophisticated specification technique
“Design by Signed Contract”, based on the concepts of DbC. Thereby, we distinguish
between component island specifications provided by component developers and
component composition specifications developed by component users. With component
island specifications we precisely describe what a component provides to and needs from
its environment. In component composition specifications the mapping of needed
properties to provided properties is specified within the context of a specific component-
based system.

These composition specifications form a signed contract which can be checked and
validated by developers or tools. Thereby situations can be detected where the needs of a
single component are not fulfilled within a component-based system. Thus, software
system defects can be identified and prevented in advance at the specification level. This
will improve the correctness and robustness of component-based systems.

The presented formal foundation of the proposed concepts of “Design by Signed
Contract” provide a reliable base to integrate these concepts into existing specification
techniques and programming languages. This may be the next step towards a successful
applied component-based software development in practice.

6 RELATED WORK ON CONTRACTS

As already mentioned, a lot of work on the integration of the concepts of DbC into
programming languages has been done by Bertrand Meyer and the Eiffel-Community
(see [Meyer87] and [Meyer97]). Surely, more sophisticated specification techniques have
been developed based on the concepts of DbC. The most important ones that have

Related Work on Contracts

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 35

influenced this work are Interaction Contracts [Helm90], Reuse Contracts [Steya96],
Evolving Interoperation Graphs [Rajli99], and Requirements/Assurances Contracts
[Rausc00].

Interaction Contracts are used to specify the collaborations between objects.
Although the basic idea of interaction contracts – to specify the behavioral dependencies
between objects – seems to be quite a good suggestion, this approach takes neither CBSD
nor DbC sufficiently into account. Interaction contracts strongly couple the behavior
specification of the component seen as an island and the behavioral dependencies to other
components. Hence, those components are still not self-contained units of deployment as
required for successful CBSD.

Reuse Contracts address the problem of changing implementations of a stable
abstract specification. There, defects in the scope of object-oriented software evolution
are discussed. This might be helpful to predict the consequences of evolving a single
component, but effects for a component-based system glued together from existing
components are not clear at all.

Evolving Interoperation Graphs provide a framework for change propagation if a
single class changes. These graphs only take the syntactical interface of classes and the
static structure (class hierarchy) of the system into account, but not the behavioral
dependencies. Moreover, neither CBSD nor DbC is taken into account.

Finally, Requirements/Assurances Contracts can be used to model and track the
dependencies between the set of specification documents of a component-based system.
Based on this approach, developers are able to track and manage the software evolution
process and to recognize and avoid failures during software evolution. However, this is
done at the level of specification documents and not at the level of specific specification
specifiers. For these reasons DbC is not taken into account in this approach.

7 ACKNOWLEDGMENTS

I am grateful to Klaus Bergner, Manfred Broy and Siegfried Schäfler for interesting
discussions and comments on earlier versions of this article.

REFERENCES

[Helm90] Helm R., Holland I. M., Gangopadhyay D. Contracts: Specifying Behavioral
Compositions in Object-Oriented System. In ECOOP/OOPSLA '90
Proceedings, pages 169-180. 1990.

[Hoare69] Hoare, C.A.R. An axiomatic basis for computer. Commun. ACM 12, 10,
October 1969, 576-585.

 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT”

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

[Hoare81] Hoare, C.A.R. The Emperor’s Old Clothes. Commun. ACM 24, 2, February
1981, 75-83.

[Meyer87] Meyer, B. Design by Contract, Technical Report TR-EI-12/CO, ISE Inc.,
1987.

[Meyer97] Meyer, B. Object-Oriented Software Construction, Second Edition. Prentice
Hall International. 1997.

[Rajli99] Rajlich V. Modeling Software Evolution by Evolving Interoperation Graphs.
In Proceedings of the International Workshop on Software Change and
Evolution 1999. 1999.

[Rausc00] Rausch A. Software Evolution in Componentware using
Requirements/Assurances Contracts. In Proceedings of the ICSE’00. 2000.

[Rausc01] Rausch A. Componentware: Methodik des evolutionären
Architekturentwurfs. PhD Thesis, Technische Universität München. 2001.

[Steya96] Steyaert P., Lucas C., Mens K., D'Hondt T. Reuse Contracts: Managing the
Evolution of Reusable Assets. In OOPSLA 1996 Conference Proceedings,
ACM Sigplan Notices, pages 268-285, AXM Press. 1996.

[Szype97] Szyperski C. Component Software, Beyond Object-Oriented Programming.
Addison Wesley Longman Limited. 1997.

About the author

Andreas Rausch received his Ph.D. in 2001 from the Technische
Universität München at the chair of Prof. Dr. Manfred Broy, with the
dissertation titled “Componentware - Evolution-based Development of
Software Architectures”. He is part of the large interdisciplinary research
project FORSOFT, leading the subproject ZEN that is concerned with the
foundations of software engineering. He has been leading various
industrial software projects, developing large distributed systems, and is

one of the four founders of the software house 4Soft GmbH. He can be reached at
rausch@computer.org.

mailto:rausch@computer.org

