
Negotiable Interfaces for Components

Simon D. Kent, Chris Ho–Stuart, Paul Roe,
Centre for Information Technology Innovation,
Queensland University of Technology, Australia

Component specifications are vital for communicating a component’s requirements,
as components are subject to third-party composition. Most modern programming
languages lack sufficient features to express the full requirements of a component,
however, much less enforce them. Pre- and post-conditions can capture functional
aspects of a component’s requirements, but are unable to express many temporal
constraints such as re-entrance restrictions or changing availability of services over
the lifetime of a component instance (object).
The approach described within forms a basis for extending the specification of compo-
nents at the programming language level, thus making such specifications enforceable.
Interfaces are extended with a factorable, abstract state, and methods of interfaces
are extended with state transformation behaviours. A new programming language
command, the USE statement, allows clients to negotiate for those services provided
by an object. A mixture of static and dynamic checking ensures the consistency of
an object’s state according to the specification of the object’s interfaces.
The mechanism proposed allows a clearer expression of re-entrance conditions and
dynamic service availability, and a greater level of checking that allows erroneous
cases to be prevented or detected during development time. The mechanism also
acts as a self-documenting feature for interfaces.

1 INTRODUCTION

The move towards software components represents an attempt to bring software
engineering in line with more mature engineering disciplines, in which tried and
tested parts are reused to speed production and improve reliability. Szyperski [18]
gives three characteristic properties of software components:

1. A component is a unit of independent deployment.

2. A component is a unit of third-party composition.

3. A component has no persistent state.

In particular, property two implies that components must come with a clear spec-
ification as to how the component may (and must) be used. Many programming

Cite this article as follows: Simon D. Kent, Chris Ho–Stuart, Paul Roe: Negotiable Interfaces
for Components, in Journal of Object Technology, vol. 1 no. 3, Special issue: TOOLS USA
2002 proceedings, pages 249–265, http://www.jot.fm/issues/issue 2002 08/article14

http://www.jot.fm/issues/issue_2002_08/article14

NEGOTIABLE INTERFACES FOR COMPONENTS

languages lack support for expressing such specifications, however, leading to speci-
fications being expressed informally in accompanying documentation. Programming
languages such as Eiffel [7] and Sather [17] have support for programming by con-
tract, but pre- and post-conditions can only capture strictly functional properties
and cannot express temporal constraints and behaviours such as the presence or
absence of outcalls, and re-entrance conditions. The situation is complicated fur-
ther by the inherently concurrent nature of component software (take for example,
Windows programs). Concurrency and re-entrance are a major source of bugs, some
of which only appear when systems are stressed.

This paper presents the integration of a set of programming language features
called negotiable interfaces into a Component Pascal like language. Negotiable in-
terfaces are a variation on state abstractions and transitions, and are targetted at
specification and checking of temporal behaviours of objects such as re-entrance.
Language level specification is desirable as it promotes self-documentation of code,
and enables formal checking (static and/or dynamic) to improve reliability and aid
debugging.

Negotiable interfaces are ordinary interfaces, with behavioural information added
to effectively extend the type of a component. Negotiable interfaces provide a mech-
anism for both expressing the availability of methods as a result of the object’s past
and current actions, and for providing guarantees about future method invocations
by clients. Negotiable interfaces also serve as the groundwork for expressing more
complex inter-object behaviours such as method availability as the result of the in-
teraction of a neighbourhood of objects. As mentioned above, we have implemented
negotiable interfaces in a variant of Component Pascal, although any language that
supports interfaces, such as Java or C#, would be suitable.

In the next section we introduce the concepts behind negotiable interfaces in
broad terms, Section 3 goes into language specifics, Section 4 discusses related work,
Section 5 gives future directions, and Section 6 presents our conclusions.

2 NEGOTIABLE INTERFACES

In this section we delve into the ideas behind negotiable interfaces. Although nego-
tiable interfaces rely on a mixture of static and dynamic checking, we defer discussion
of static checking until the end of this section as the dynamic aspects provide a more
intuitive introduction.

As the name implies, the concept of a negotiation is central to our proposal. In a
negotiation, two parties negotiate over a subject and the outcome of the negotiation
may depend on preceding or pending negotiations. If negotiation fails, the status
quo is unchanged but the parties are aware that the negotiation failed. If negotiation
succeeds, the parties are aware of the success and must meet their obligations within
the scope of the negotiation.

250 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

2 NEGOTIABLE INTERFACES

Figure 1: Negotiation for method Add

In our proposal, the parties are a client and an object, and the subject is the
ability to invoke some constrained sequence of services. If the negotiation fails, the
client must continue without using those services, but if it succeeds then the client
gains the ability (and in some cases, obligation) to invoke those services, while the
object is obliged to handle them.

We demonstrate this process through a simple Model-View-Controller example.
The examples given are motivated by those given by Szyperski in [18] on pages 57–
66, in which he describes how object re-entrance can break pre- and post-conditions.
In particular, we focus on how our system can express and enforce re-entrance
constraints, thus capturing some of the temporal properties that pre- and post-
conditions cannot.

In our example, we have a Controller, a Model, and several Views on the Model.
We note that any time a client wishes to Add data to our Model, the Model will
need to notify its Views. Notification requires a callout to each of the Views on the
Model and, in this implementation, is non re-entrant. We enforce this condition by
requiring that clients negotiate for the ability Add data to the Model, in order to
prevent re-entrance to the notification code.

Figure 1 demonstrates a simple negotiation. A client, the Controller, requests
the ability to Add some data to the Model object. The Model object agrees and the
Controller Adds some data to the Model during the scope of the negotiation.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 251

NEGOTIABLE INTERFACES FOR COMPONENTS

Figure 2: Negotiation with tokens

More concretely, we represent the “ability” to invoke some set of methods as a
bag of keys or tokens. In order to invoke a certain method, the client must hold
the correct bag of tokens, which is passed to the object and transformed during the
method call. On completion of the method call, the transformed bag of tokens is
returned to the client. At any particular time, an object holds a bag of tokens that
represent those services of the object that are available for use - the bag of tokens
represents the object’s temporal state in an abstract and factorable manner.

Figure 2 demonstrates the same negotiation, with tokens made explicit. A client
that wishes to call an operation requiring notification must hold a bag containing a
Notify token; a client obtains this token by negotiating with the Model.

The negotiation process starts with a request by the Controller for a bag of to-
kens, in this case, a bag containing single Notify token. We assume that the Model
is not currently notifying its Views and hence has a Notify token available. The
Model therefore grants the Controller’s request. The Controller begins its opera-
tions, possibly performing other tasks now that it is sure of being able to Add to the
Model, and eventually uses the Notify token to Add the required data. The Model
consumes the Notify token, adds the data, notifies its views, and then returns the
new tokens produced as a result of the Add operation - again a Notify token since the
Add operation has finished, and the Model will be in a state in which it can perform
notifications. Control returns to the Controller and at the end of the negotiation

252 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

2 NEGOTIABLE INTERFACES

Figure 3: Re-entrance detection

the Controller returns the left over tokens to the Model.

Figure 3 demonstrates re-entrance detection. Here we have a Controller which is
also a View upon the document. The example runs similarly to that in Figure 2 up
until the Model notifies its Views, at which point the Controller/View is notified.
During the notification, the Controller/View wishes to Add or Delete data from the
Model (in order to flush a message queue say), but first must negotiate for a Notify
token. At this point, the Model is still in the middle of an Add operation which the
Controller invoked by using the Model’s Notify token. Hence, no Notify tokens are
available and re-entrance is detected. The negotiation fails and the Controller/View
must defer flushing its buffers until later. Control returns to the Model, which
notifies the rest of its Views without interruption.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 253

NEGOTIABLE INTERFACES FOR COMPONENTS

Concurrency

Thus far, we have only examined simple examples and not yet fully explained when
a negotiation fails or succeeds. In the sequential case, the semantics of negotiation
is trivial, as the presence or absence of requested tokens will determine success or
failure. As mentioned earlier, however, we aim to handle concurrency as well, and
although the simple presence or absence of tokens could be used to determine the
result of a negotiation, another option is available: a negotiation can block on the
result of pending negotiations.

This is possible as negotiations consist not only of a request for tokens, but a
promise to return certain tokens. The future state of an object can be determined
therefore, and a client may wait if the object may be in a suitable state in the future.

The negotiation mechanism can prevent deadlock due to circular blocking pat-
terns as well. By recording the causality (logical thread identification) of negoti-
ations, we can ensure that nested negotiations never directly or indirectly block
on the result of outer negotiations: ensuring that causalities never block on them-
selves. Negotiations that would lead to deadlock if blocked can therefore be made
to fail allowing a programmer to either rollback changes or throw an error and use
the negotiation chains that caused the error (potentially available from the runtime
system) to isolate the problem.

It is worth noting that in the concurrent case, detection of re-entrance reduces
to the special case of deadlock detection in which a nested negotiation attempts to
block on the result of an outer negotiation.

Static Checking

The reader will have noticed a vital omission — how are we sure the client will
keep its promises? If a negotiation consists of a request for tokens and a promise to
return certain tokens, how are we sure the client will use only the tokens requested,
and return those tokens specified in its promise? Since method invocations are the
manner by which tokens are consumed and produced, we must ensure that any
sequences of methods that are called:

1. Are allowable according to the tokens the client is holding at the time.

2. Produce the correct bag of tokens when the negotiation finishes.

Our proposal does this via static checking (the type system). By tracking the
negotiable state of an object over the scope of a negotiation, we can statically detect
if any illegal method invocations are made, and if the client will hold the promised
set of tokens at the end of the negotiation. Our approach associates a “negotiable”
type with any references that are the subject of negotiation and maintains a set of
possible states that the subject may be in. A method can only be called if it is legal

254 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

3 LANGUAGE SPECIFICS

in all the possible states of the subject, and a negotiation is only well-typed if the
final states of the negotiation agree with the promise made by the client.

Such a system grants other benefits as well. When a negotiation has succeeded,
the client may pass obligations to perform certain token transformations/method
calls to other objects via negotiable typed parameters. The bodies of methods with
such parameters effectively become part of the negotiation and can be checked in a
similar fashion to the scope of negotiations. As such, methods can promise to fulfill
part of a client’s obligation.

3 LANGUAGE SPECIFICS

Component Pascal

This work has been implemented in an experimental version of gpcp [4], a Com-
ponent Pascal [10] compiler that generates Java bytecode or .NET intermediate
language. We describe negotiable interfaces in a Component Pascal like language.
Interface types are declared using the INTERFACE record attribute:

TYPE

Interface* = POINTER TO INTERFACE RECORD

END;

A record type may inherit from one extensible base class and implement multiple
interfaces. A record is declared to implement interfaces as follows:

(* Declaration of extensible class *)

Base* = POINTER TO EXTENSIBLE RECORD

. . . (* attributes *)

END;

(* Declaration of sealed class *

* inheriting from Base *

* and implementing Interface. *)

Sub* = POINTER TO RECORD (Base +

Interface)

. . . (* attributes *)

END;

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 255

NEGOTIABLE INTERFACES FOR COMPONENTS

Methods of interfaces are declared similarly to methods of normal classes (but
must be abstract):

PROCEDURE (this:Interface) Foo*(),

NEW, ABSTRACT;

Sub would implement method Foo through a method with a signature matching
that of Foo:

PROCEDURE (this:Sub) Foo*(), NEW;

BEGIN

. . . (* implementation *)

END Foo;

As an alternative, Sub may “explicitly” implement method Foo by using the
following syntax:

PROCEDURE (this:Sub.Interface) Foo*(),

NEW;

BEGIN

. . . (* implementation *)

END Foo;

This concept of “explicit” method implementation is the same as that used in C#
[8]. Explicit implementation removes the method from the namespace of the class,
thus preventing the method from being called except through an interface reference.
This allows for the implementation of several versions of the same interface in one
class.

Negotiable interface types

Our approach uses bags of tokens to represent the abstract state of an object. Such
an approach allows the state to be factored between clients (between references in
fact). The type of an interface includes a declaration of the tokens that may represent
the abstract state of an object over its lifetime, accompanied by a declaration of the
initial bag of tokens. We demonstrate the syntax giving simple examples from our
Model-View-Controller scenario.

256 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

3 LANGUAGE SPECIFICS

A declaration for a hypothetical Model interface from the example above is as
follows:

TYPE

IModel* = POINTER TO INTERFACE RECORD

TOKEN Initial,Notify;

INIT [Initial];

END;

Following the TOKEN keyword are the potential tokens that may represent the
abstract state of a Model object and following the INIT keyword is a bag of tokens
representing the initial state of a Model object when it is created.

Negotiable method types

Methods of each interface are given a behavioural type consisting of a pre-state
and a post-state. The pre-state and post-state are again bags of tokens represent-
ing the abstract state required by the method before execution, and the abstract
state returned after the method has executed respectively. These abstract method
behaviours serve a similar purpose to pre- and post-conditions, but with respect
to availability of the interface’s methods over time; something that pre- and post-
conditions generally have difficulty expressing. Thus for initialisation and addition
methods we have:

PROC (this:IModel) Initialise(. . .) ::

[Initial]->[Notify];

PROC (this:IModel) Add(. . .) ::

[Notify]->[Notify];

(Note that for brevity we have omitted NEW and ABSTRACT keywords and used
PROC in place of PROCEDURE.) So for IModel.Add, the pre-state is [Notify] and the
post-state is [Notify]; when invoking IModel.Add a client must first be certain
that the Model object referred to is able to notify its views (a client achieves this
through negotiation using the USE statement - see Section 3) and after the method
has completed the object will once again be able to notify. Behavioural types for
methods of interfaces are optional, but the type system requires that any classes
implementing the interface “explicitly” implement methods that have a behavioural
type.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 257

NEGOTIABLE INTERFACES FOR COMPONENTS

Negotiation

In order to allow clients to negotiate with objects, we introduce a new programming
language statement called the USE statement. A USE statement can be thought of
as a type guard to determine an object’s behavioural type (abstract state). In a
similar fashion to the Component Pascal type case statement, the USE statement
performs a test on an object rather than simply acting as an assertion.

Returning to our simple Model-View-Controller example we have the Controller
creating a new document and adding data from a template:

PROC (c:Controller) CreateTemplate

(i:IModel);

BEGIN

. . .
USE i :: [Initial] -> [Notify] DO

(* USE command *)

i.Initialise(. . .);
i.Add(. . .);

ELSE

(* ELSE command *)

END;

. . .
END CreateTemplate;

In the above example, i is the subject of the negotiation, [Initial] is the re-
quested state, and [Notify] is the state that the client promises to return once
the negotiation is finished. When executed, the abstract state of the object that i

refers to is dynamically and atomically inspected. If the object has the requested
state, [Initial] in this case, the negotiation succeeds, the client is granted re-
quested state, and the USE command may be executed; otherwise, the state remains
unchanged and the ELSE command is executed.

Restrictions and Considerations

Currently we restrict the subject of USE statements to interface reference identifiers
only. That is, one may only negotiate with an object through an interface reference.
This helps simplify the syntax of the USE statement so clients do not have to state
which interface of the object they wish to negotiate with. This is also the reason for
enforcing explicit implementation of behaviourally typed methods.

Identifiers that are the subject of negotiations are also necessarily read-only for
the duration of the negotiation. Clearly this must be the case in order to ensure
the object referred to by the identifier is in a state consistent with the tokens held
locally.

258 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

4 RELATED WORK

Negotiable type system and re-USE

The request and promise of a negotiation provides the basis for our type system to
check that behaviourally typed methods are used safely. Our type system statically
checks that behaviourally typed methods are only called when the object is in the
correct state; i.e. within the scope of a negotiation. As with most type systems, our
type system is conservative and will reject some correct programs.

During the scope of a negotiation, the type system maintains a set of possible
states (bags of tokens) for subject of the negotiation. Modeling the negotiable type
of an identifier by a set of states allows modeling the non-determinacy introduced
by control-flow statements and makes the type system less restrictive. For example,
if i holds an IModel reference in an {[Initial]} state then the following code will
leave the reference in an {[Initial],[Notify]} state.

IF bool THEN

i.Initialise(. . .);
END;

In order to reconcile this non-determinacy, we allow for nested USE statements
within the scope of the negotiation to query the local state in order to disambiguate
non-determinate states introduced by control flow statements.

On typing loop statements, we adopt a conservative approach and require that
commands enclosed by a loop have a constant negotiable type: that is, the set of
states passed into the loop be the same as the set of states returned by the loop.
Other more flexible approaches (based on domains) are under consideration.

Finally, our type system includes support for typing parameters as stated in
Section 2. Parameters with negotiable types transform the body of a method into
part of a negotiation. For example, it would be more useful to ensure the Model
passed to the CreateTemplate method above is able to receive template data before
CreateTemplate is invoked. The method signature below would require the client
to do exactly that.

PROC CreateTemplate(i:IModel::

[Initial]->[Notify]);

4 RELATED WORK

The concept of associating an abstract state to objects in order to describe changing
method availability is not a new one. In particular, many concurrent object-oriented

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 259

NEGOTIABLE INTERFACES FOR COMPONENTS

languages, and type systems for active objects use a concept of object state to help
determine method availability. More recently, this concept has also been applied in
a similar fashion to interfaces for component programming.

Many concurrent O-O languages that use abstract state to determine method
availability have “active” objects such as those in Actor languages [1]. Each object
has its own thread of execution, sends messages to other objects, and has its own
message queue. Different schemes for using abstract state for concurrency control,
such as path expressions in PROCOL [19] and BCOOPL [3], behaviour sets in
ACT++ [6] and guards in Guide [2], result in differing levels of expressiveness for
determining method availability. Most are generally not factorable, however. As
these languages deal mainly with active objects the focus is placed upon the ability
of objects to handle specific orderings of messages. Specification and prevention
of re-entrance is not a major concern of such languages so expressing intermediate
state during method invocation is given little focus.

The focus on active objects also means that such languages are usually only
concerned with guarding a single method at a time as opposed to blocks of code
presented in our proposal. The authors are also unaware of any concurrent O-O
language that incorporates a type system that incorporates behavioural obligations
and promises in a similar fashion to negotiable interfaces.

Type systems for active objects such as in [9] [20] [11], [12], and [13], annotate
the methods of interfaces or classes using some process formalism to describe the
changing availability of services during execution. As the focus of such type systems
is to type behaviour patterns in languages with active objects, describing re-entrance
and intermediate state are again not a primary focus.

The type systems of [9] and [20] utilise behaviour descriptions of both client
and server objects to examine the combined behaviour of an object and its clients
at composition time. Such approaches are not suitable for handling dynamically
changing sets of clients or situations in which aliasing occurs as the identity of
objects needs to be known statically. Our approach uses dynamic checking in the
form of negotiation to handle such behaviour, while statically checking that clients
attempt to use services correctly i.e. within the scope of negotations.

Furthermore, although composition level checking is desirable, it does not help
during the construction process. Our type system enables static checking during con-
struction of a component thus preventing certain errors before composition (which
may occur after the component has been deployed). The nature of our type system
also allows location of specific points at which a component’s behavioural specifica-
tion has been violated, whereas such information may be difficult to extract from a
composition level type system using a process formalism to check the joint behaviour
of several components.

The type system presented and developed primarily by Puntigam in [11, 12]
and Puntigam and Peter in [13] has a similar scheme for decorating interfaces with
(extended) bags of tokens and assigning behaviours to methods. Our proposal was

260 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

5 FUTURE DIRECTIONS

directly influenced by this work as bags are factorable and may be split over ref-
erences. The object model and objectives of the type system proposed here are
different from that of Puntigam and Peter. They consider active objects that com-
municate via asynchronous message passing with unbounded buffers - once again
re-entrance is not a concern.

Puntigam and Peter seek to ensure that the sequence of messages received by
an object conforms to the (dynamic) type of the object and achieve this by typing
individual references to an object. Whenever a reference is passed to another client,
the dynamic type of the reference is split between the old and new references. This
allows the clients to access services of a server object without querying the object
as to its current state; however, if the client wishes to access more services than
its reference allows, it must somehow obtain a reference from another client or the
server to access those services. This may actually lead to clients becoming coupled,
which is an unnatural behaviour for component systems.

Although Puntigam states that his proposal may be used for component inter-
faces, we believe our proposal is more natural as we aim at a programming language
and object model more natural to contemporary component programming. Our con-
cept of negotiation also has semantic application for synchronous method invocation,
and our type system checks that negotiations leave the object in a predetermined
state.

Finally, the type system developed by Reussner in [14, 15], which based on earlier
work by Reussner and Heuzeroth in [5, 16], extends Java interfaces with augmented
finite state automata. Reussner’s approach decorates each interface with a call au-
tomata that specifies legal orderings of calls, and each method of a component is
with an automaton that describes which other services the method uses. Combin-
ing the call and method (or function) automata gives the complete behaviour of a
component (called the EC-Automaton). The combined automata can be checked
with behaviour of other components at composition time to accept or reject legal
compositions. Reussner’s type system focuses upon adaptation of components and
composition level checking, whereas our type system is aimed at component con-
struction and is accompanied with the runtime mechanism of negotiation.

5 FUTURE DIRECTIONS

Our implementation of negotiable interfaces constitutes the groundwork for future
research in language level component specification and as such there is still work to
be done before negotiable interfaces become a truly usable language feature.

One current focus in expanding our research is increasing the expressiveness of
behaviour specification. Part of this entails increasing the flexibility of interface
descriptions and behaviours of methods and negotiations. Another avenue of inves-
tigation is different types of tokens and their negotiation semantics. Finally, further
expressiveness is required to fully capture object-wide and inter-object behaviours.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 261

NEGOTIABLE INTERFACES FOR COMPONENTS

Flexibility of abstract state

• Multiple behaviours per method:
In the model proposed, methods may only have one behaviour but in order
to expres certain behaviour protocols (such as finite state automata), multiple
behaviours per method are required.

Figure 4: IPersist interface

Figure 4 demonstrates the desired behaviour of an interface, IPersist, that
provides persistence functionality. Of particular interest is the handsoff

method, which prevents all other methods from being called until a second
handsoff method is called. This cannot be expressed in a single behaviour
per method scheme. We might represent IPersist as follows:

IPersist = POINTER TO INTERFACE RECORD

TOKEN Stored,Loaded,Handsoff;

INIT [Stored];

END;

PROC (i:IPersist) Load(. . .) ::

[Stored]->[Loaded];

PROC (i:IPersist) Persist(. . .) ::

[Loaded]->[Stored];

PROC (i:IPersist) Modify(. . .) ::

[Loaded]->[Loaded];

PROC (i:IPersist) Handsoff(. . .) ::

[Loaded]->[Handsoff] |

[Handsoff]->[Loaded];

• Unbounded behaviour:
Currently, we only use bags (vectors of non-negative integers) to describe the

262 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

5 FUTURE DIRECTIONS

state of an object. To express unbounded behaviours, such as allowing an
unbounded number of clients to access a service in particular state, we are
investigating the use of infinite numbers of tokens or negative tokens.

• Non-determinacy:
The abstract state of an object should reflect the concrete state of the object.
It is clearly conceivable that a method may have several possible outcomes
and hence modify the state of an object in several possible ways. This may
complicate the semantics considerably. Negotiations would block on potential
outcomes of other negotiations but then fail if the desired outcome does not
eventuate.

Different types of tokens

• Causality/Thread specific tokens:
Such tokens are only visible or usable by one causality or thread. Methods
guarded by such tokens become usable by only by the nominated thread. Such
a mechanism may be useful for representing thread affinity, or recursive (or
re-entrant) but mutually exclusive behaviours.

• Secure tokens:
Secure tokens require that negotiating clients be trusted to guard privileged
operations. Secure tokens would add an additional check to the semantics of
negotiation, causing failure for non-secure requests.

• Transactional tokens:
Negotiation points may serve as the boundaries for lightweight transactions.
Transactional tokens may help in rolling back changes when erroneous cases
such as deadlock are detected.

Inter-object behaviour

• Shared tokens:
The interfaces of a component are often not orthogonal. Currently, method
invocations can only affect the state associated with one interface of an object.
Sharing or equating tokens between the objects of an interface may allow
methods to effect object wide (over all interfaces) state changes. This same
principle may be extended to sharing tokens between objects. Such a scheme
will allow specification of some inter-object behaviours and relationships not
currently expressible.

Shared tokens may also help model transactional behaviour, by propagating
transactional tokens to nested negotiations.

• Event handlers and state splitting:
Puntigam’s approach of associating state with individual object references as

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 263

NEGOTIABLE INTERFACES FOR COMPONENTS

opposed to the object itself may be useful for modeling registration of event
handlers.

6 CONCLUSIONS

Negotiable interfaces allow inclusion of behavioural information into the type system
of a programming language and provide runtime checking to ensure consistency of
an object’s state. The mechanism provides a mechanism for expressing method
availability, re-entrance constraints, and synchronization conditions and can be used
to prevent re-entrance and deadlock due to circular blocking. Combined with pre-
and post-conditions, negotiable interfaces may allow more complete specification of
components.

We are currently extending the type system and semantics to include more ex-
pressive behaviours in order to make the proposal a useful programming language
feature.

We have implemented negotiable interfaces in an experimental version of our
Component Pascal compiler, gpcp, and expect to release a public, open source ver-
sion in the near future.

REFERENCES

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Series
in Artificial Intelligence. MIT Press, Cambridge, MA, 1986.

[2] R. Balter, S. Lacourte, and M. Riveill. The Guide language. The Computer Journal,
37(6):519–530, 1994.

[3] H. de Bruin. BCOOPL: Basic concurrent object-oriented programming language.
Software — Practice and Experience (SPE), 30:849–894, 2000.

[4] gpcp. Gardens point component pascal.
http://www.fit.qut.edu.au/CompSci/PLAS/ComponentPascal/, 2001.

[5] D. Heuzeroth and R. Reussner. Dynamic coupling of binary components and it
technical support. In First Workshop on Generative and Component based Software
Engineering – Young Researchers Workshop, Erfurt, 1999.

[6] D. G. Kafura and K. H. Lee. ACT++: Building a concurrent c++ with actors.
Journal of Object-Oriented Programming, 3(1), 1990.

[7] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[8] Microsoft. C# language specification. available from

http://msdn.microsoft.com/vstudio/nextgen/technology/csharpdownload.asp, 2000.
[9] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis,

editors, Object-Oriented Software Composition, pages 99–121. Prentice Hall, 1995.
[10] Oberon Microsystems Inc. Component pascal language report. available from

http://www.oberon.ch/docu/language report.html, 1997.
[11] F. Puntigam. Types for active objects based on trace semantics. In 1st IFIP Workshop

on Formal Methods for Open Object-based Distributed Systems (FMOODS’96). Paris,
France, 1996.

264 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

http://www.fit.qut.edu.au/CompSci/PLAS/ComponentPascal/
http://msdn.microsoft.com/vstudio/nextgen/technology/csharpdownload.asp

6 CONCLUSIONS

[12] F. Puntigam. Coordination requirements expressed in types for active objects. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP’97).
Springer–Verlag, Jyväaskylä, Finland, 1997.

[13] F. Puntigam and C. Peter. Changeable interfaces and promised messages for concur-
rent components. In ACM Symposium on Applied Computing (SAC’99). San Antonio,
Texas, 1999.

[14] R. Reussner. Formal foundations of dynamic types for software components. Techni-
cal Report 08/2000, Department of Informatics, Universität Karlsruhe, Department
of Informatics, 2000.

[15] R. Reussner. Enhanced component interfaces to support dynamic adaptation and
extension. In Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS–34), 2001.

[16] R. Reussner and D. Heuzeroth. A meta-protocol and type system for the dynamic
coupling of binary components. In Proceedings of the OOPSLA’99 Workshop on
Object Oriented Reflection and Software Engineering, Denver, 1999.

[17] D. Stoutamire and S. Omohundro. Sather1.1. available online at
http://www.icsi.berkeley.edu/∼sather/Specification/Sather1.1/index.html, 1996.

[18] C. Szyperski. Component Software, Beyond Object–Oriented Programming. Addison–
Wesley, Harlow, Essex, 1 edition, 1998.

[19] J. van den Bos and C. Laffra. PROCOL: A concurrent object-language with protocols,
delegation and persistence. Acta Informatica, 28:511–538, September 1991.

[20] H. Wehrheim. Subtyping patterns for active objects. In Proceedings 8ter Workshop
des GI Arbeitskreises GROOM (Grundlagen objekt-orientierter Modellierung): Vi-
suelle Verhaltensmodellierung verteilter und nebenläufiger Software-Systeme, Muen-
ster, 2000.

ABOUT THE AUTHORS

Simon D. Kent is a PhD student within the Programming Languages and Systems
research group of the Centre for Information Technology Innovation at QUT. His
main interests lie in programming languages, compiler design and implementation,
and component-based programming. His email is s.kent@qut.edu.au.

Chris Ho-Stuart is a lecturer in the School of Software Engineering and Data
Communications at QUT. His interests include real time process algebra and various
kinds of esoteric finite automata.

Paul Roe is an Associate Professor in the School of Software Engineering and
Data Communications at QUT and heads the Programming Language and Systems
research group of the Centre for Information Technology and Innovation.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 265

http://www.icsi.berkeley.edu/${sim }$sather/Specification/Sather1.1/index.html
mailto:s.kent@qut.edu.au

