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Abstract 
The separation of concerns, as a conceptual tool, enables us to manage the complexity 
of the software systems that we develop. A number of approaches have been proposed 
that aim at modularizing software around the natural boundaries of the various 
concerns, including subject-oriented programming (SOP) [Harrison & Ossher, 1993] 
aspect-oriented programming (AOP) [Kiczales et al., 1997], and our own view-oriented 
programming (VOP) [Mili et al., 1999]. Both SOP and AOP support compile-time 
composition. A major advantage of VOP is run-time behavioral composition, which 
comes at the expense of a cumbersome dispatching mechanism. The same 
applications that warrant the kind of separation supported by these techniques tend also 
to be distributed whereby different client sites see different compositions of aspects, 
simultaneously. The level of indirection provided by distribution middleware simplifies 
the programming model, and reduces the overhead of VOP. 

1 INTRODUCTION 

In the real world, objects change roles during their lifetime. From the time a person 
appears on the IRS records as a deductible expense, that person will keep changing roles 
until well beyond its death, regularly acquiring and relinquishing attributes and behavior. 
Generally speaking, we need a mechanism for allowing objects to change behavior during 
their lifetime, specifically when that change takes place within the same program run. 
Further, we should be able to support this behavioral change, while the program is 
running, and we should be able to accommodate new behaviors that were not anticipated 

In the context of a distributed application, different sites, and different users within 
the same site, may see different aspects of the same objects, including different 
functionalities, different access rights and privileges, different quality of service 
parameters, and so forth. 
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The transition from analysis to design consists of deriving an implementation of the 
functionalities specified at analysis time in a way that satisfies design-level constraints 
and addresses design-level concerns. Such concerns include error handling, 
synchronization, logging, access to lower-level services, and the like. Addressing these 
concerns usually means adding code that crosscuts normal modularization boundaries, i.e. 
typically objects and methods. 

These are but three of the most common situations requiring us to modularize 
programs along dimensions other than the traditional function, class, or method, inherent 
in both procedural and object-oriented programming. There have been a number of 
approaches to providing language-level support for separation of concerns in the OO 
research community. Each one of these approaches was intended to solve one particular 
set of problems related to the three mentioned above.   

The concept of views in OOP was first introduced by Shilling and Sweeny [Shilling 
& Sweeny, 1989] as a filter of a global interface of the class, but the views are not 
separable or separately reusable. Aksit et al. presented composition filters as a way of 
intercepting incoming and outgoing messages [Aksit et al., 1992]. However, the filters 
add no state, and can only modify existing behavior without adding new ones. Harrison 
and Ossher [Harrison & Ossher, 1993] proposed subject-oriented programming as a way 
to build integrated “multiple view” applications by composing application fragments, 
called subjects, which represent compilable and possibly executable functional slices 
[Harrison & Ossher, 1993]. However, the composition of subjects takes place at 
compilation time, and offers few degrees of freedom. Aspect oriented programming 
captures concerns that crosscut several entities in new constructs called aspects that are 
woven into the structure of functional code [Kiczales et al., 1997]. However, aspect 
“weaving” also takes place at compilation time, and aspects do not necessarily 
correspond to domain-level behavior. 

The problem of dynamic adaptation has been addressed by a number of researchers. 
Earlier approaches were based on variations of the adapter/decorator design pattern. The 
problem with such approaches is that the various adapters (and the classes they adapt) 
have to be known beforehand [Buchi & Weck, 2000]. Two approaches attempt to address 
this problem in a type-safe fashion: Kniesel, with Darwin/Lava [Kniesel, 1999], and 
Büchi & Weck’s generic wrappers concept [Buchi & Weck, 2000]. Presumably, both 
approaches enable an object to offer different interfaces to different client programs. With 
generic wrappers, the various interfaces have to be hierarchically composed. Further, 
with both approaches, the adapter and “adapted” have different object identities, and 
neither approach handles distribution explicitly. 

It turns out that the same applications that warrant the use of separation of concern 
techniques also tend to be the kind of applications that are distributed and that offer 
different sets of functionalities to different user communities. In summary, we have a 
situation where: 

1. Objects acquire and lose behavior dynamically (the dynamic behavior change 
problem), 
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2. Objects offer different sets of behaviors to different client programs 
simultaneously (the multiple interface problem), and 

3. (Server) objects and client programs are distributed (the distribution problem). 
We could treat the different problems separately, if there are no interactions between the 
three aspects, or try to find a global solution that accommodates all three requirements in 
an optimal fashion. In this paper, we propose an approach that handles all three 
requirements in a unified framework. It relies on a (non-distributed) programming model 
called view oriented programming [Mili et al., 1999] that considers application objects as 
consisting of some core functionality to which state and behavior (views) are added and 
retracted on demand during run-time. To support this programming model in an existing 
typed language (first C++, and then Java), without unduly burdening programmers with 
new syntax and semantics, we set out to use a code transformation approach that trades 
performance and type safety for run-time flexibility. As it turned out, distribution actually 
simplifies this process, for two reasons, 1) a conceptually clean separation between 
interfaces (clients) and implementations (servers), 2) a built-in infrastructure for dynamic 
behavior invocation. 

The next section includes a brief overview of the major separation of concerns 
techniques, and a more detailed presentation of our own view-oriented programming. 
Section 3 explores distribution issues in the context of these methods. Section 4 describes 
the principles underlying our approach. An ongoing implementation is described in 
section 5. We conclude in section 6. 

2 SEPARATION OF CONCERNS TECHNIQUES 

We start with some widely known methods, and then spend some time describing view-
oriented programming because it is the basis for the approach described in section 4. 

Subject-oriented programming 

Subject-oriented programming views object oriented applications as the composition of 
several application slices representing separate functional domains or add-ons (features) 
to existing functional domains. Such a slice is called a subject and consists of a self-
contained, declaration-wise, object-oriented program, with its own class hierarchy. 
Subject-oriented programming enables us to compose such hierarchies (subjects) into one 
that, generally speaking, consists of, 1) the union of the interfaces (signatures) emanating 
from the input subjects, and 2) the composition of the implementations of the methods 
that are defined in more than one subject. Default composition uses name matching to 
compose class definitions. Name matching may be overridden locally with composition 
expressions written in a powerful composition language [Ossher et al., 1995]. 

A major advantage of class composition à la SOP (i.e. by “merging” class 
hierarchies) over composition through multiple inheritance is that when two classes are 
“merged”, all of their descendants (from both input hierarchies) will benefit from the 
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“merge”. By contrast, adding an aspect (embodied in a class) to an existing hierarchy 
using multiple-inheritance requires that we create a subclass of each class in the 
hierarchy. SOP, and to some extent, its descendant MDSOC (Multi-Dimensional 
Separation of Concerns, [Tarr et al, 1999]) suffer from a number of limitations, including, 
1) the compile-time binding of the various subjects, 2) the relative coarseness of the 
composition unit—the method—, because of which composability requires some pre-
planning [Mili et al., 1996], [Mili et al., 2001a], and 3) the limited reusability of subjects 
whose composition relies on extensional name matching—renaming notwithstanding. 

Aspect-oriented programming 

Underlying AOP is the observation that what starts out as fairly distinct concerns at the 
requirements level, or at the design requirements level (non-functional requirements) end 
up tangled in the final program code because of the lack of support, both at the design 
process level, and at the programming language level, for keeping these concerns 
separate. With aspect-oriented programming (AOP), these concerns may be packaged as 
aspects, which can be woven into “any” application that has those concerns. AOP 
requires three ingredients: 

• A general purpose programming language for defining the core functionalities of 
software components, 

• An aspect language for writing aspects, i.e. code modules that address a specific 
concern and that cross-cut various components in the general-purpose language, 
and 

• An aspect weaver, which is a pre-processor that “weaves” or “injects” aspects into 
the base software components to yield vanilla flavor components, coded in the 
general purpose programming language. 

Kiczales et al. have proposed different forms of aspects. The simplest form of aspects, 
advisories, add some piece of code to specific methods identified by more or less 
complex <method,class> expressions (so-called point cuts), and may be used to 
instrument code or to handle some fairly generic functionality (logging, error handling, 
etc.). The language for describing point cuts enables us to specifying class names and 
method names intentionally (property-based point cuts) using more or less complex 
patterns. Further, the code embodied in the aspects can be inserted at a variety of points 
of control (so-called join points), as opposed to SOP’s implicit before or after semantics. 
Finally, a third kind of aspects is proposed that handles associations between objects. 
Such aspects may have their own state variables, and may trigger the execution of a 
number of methods on the participating objects. 

Aspect-oriented programming has gained wide acceptance in the research 
community in part because of its gradual learning curve: it is possible to do eminently 
and frequently useful things simply. However, much like SOP, it only supports compile-
time composition of aspects. A number of proposals have been floated to support 
dynamic “weaving” of aspects. Such proposals rely on reflection, with two major 
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disadvantage, 1) lack of safety — too much uncontrolled power, and 2) performance 
penalty. 

Dynamic adaptation methods 

Adaptation techniques were first developed in the context of GUI frameworks. Typically, 
most graphical components would come in several flavors, a basic one, and a set of 
“decorated flavors” to include things such as borders, “scrollability”, and the like.  Rather 
than define a variant (subclass) for each combination of graphical attributes, we use the 
adapter/wrapper design pattern. To some extent, the filter-based approaches [Shilling & 
Sweeny, 1989] and composition filters [Aksit et al., 1992] are examples of such 
approaches. However, the traditional wrapper implementation suffers from a number of 
problems [Buchi & Weck, 2000]. Büchi and Weck defined a set of requirements that 
wrapping/adaptation methods must satisfy, including: 

• Run-time applicability: the actual type and instance of the wrapped object must be 
decidable at run-time, 

• Genericity: the wrapper must be applicable to any subtype of the declared 
interface of the wrapped object 

• Transparency: the wrapper should be a subtype of the wrapped object 
• Overriding: wrappers should be able to override methods of wrapped objects 
• Shielding: a wrapper should be able to control whether clients can access directly 

the wrapped object. 
The traditional decorator pattern fails the run-time applicability, transparency, and 
shielding conditions. Run-time applicability usually comes at the expenses of type safety. 
Both Kniesel [Kniesel, 1999] and Büchi and Weck [Buchi & Weck, 2000] proposed Java-
based techniques for providing type-safe run-time bound decorators. Büchi and Weck 
defined the concept of generic wrappers which are represented using a class-like 
syntactic construct that specifies the static type of the objects to be wrapped — called 
wrappee. The wrappee is specified at run-time (wrapper creation time). In their model, 
they require that the wrapper be of a subtype of the run-time type of the wrapped object. 
However, in their first prototype implementation, they settled for the static type. With 
generic wrappers, a wrapper forwards method calls to the wrappee when those methods 
don't exist in the wrapper. Generic Wrappers support conjunctive adaptation in the sense 
that, if we want to define several wrappers on the same object, they have to wrap each 
other in a hierarchical fashion. 

Kniesel proposed Lava as an extension of Java with a real delegation mechanism 
[Kniesel, 1999]. An object delegates to another object specified as a special attribute (an 
instance variable qualified as a delegatee) in its class definition. The delegatee may 
change during run-time, in the same way that strategy objects may change in the strategy 
pattern. Kniesel shows that his system is type safe. However, a major limitation of Lava 
is that the number and type of delegatees is fixed at compile-time: it is part of the class 
definition! 
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View-oriented programming 

Basics: we view each object of an application as a set of core functionalities that are 
available, directly or indirectly, to all the users of the object, and a set of interfaces that 
are specific to particular uses, and which may be added or removed during run-time. The 
interfaces may correspond to different types of users with similar functional interests or 
to different users with different functional interests. We set out to provide support for the 
following: 

• Enable client programs to access several functional areas or views simultaneously,  
• Support the addition and removal of views (functional slices) during run-time, 

making objects support different interfaces during run-time, and 
• Have a consistent and unencumbered protocol to address objects that support 

views. 

Figure 1 shows an aggregation-based implementation of this idea. The dashed object 
boundary (rectangle) represents our abstraction of an application object: it consists of the 
combination of the core instance and the views. In this example, the core object includes 
two state variables (‘a’ and ‘b’), and supports three operations (f(), g(), and h()). The view 
objects, which point to the core object, may add state (‘c’ for view 1 and ‘d’ for view 2), 
behavior (i(...) for view 1, j(...) for view 2, and k(...) for views 1 and 3), and delegate 
shared data and behavior. In this case, upon invoking the operation f() on view 1, the 

Figure 1. A model of an object with views. 

Legend: - dotted arrows indicate delegation links 
 - the resulting application object supports all the interfaces 

j(.) 

g(.) 

h(.) 

i(.) 

k(.) 

f(.) 

f() 

g(), a 

g(), b 
View 1 
c : int; 

f(x : int): int ; 
k(x: int): float; 
i(z: char):bool; 

Core object 

a: int; 
b: float;

f(x : int): int; 
g(y: float): int; 
h(z: string): int;

View 3

b: float;
k(x: int): float 
g(y:float): int; 

View 2 

a: int; 
d: float;

g(y:float):int; 
j(x: int): int; 

Application Object
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request is forwarded to the core object, and the operation f() is executed in the context of 
the core object. The same is true for references to the shared state variables (‘a’ for view 
2, and ‘b’ for view 3). Practically, there will be a single copy of such variables, stored in 
the core object, and read/write requests will be forwarded to the core object. The 
application object is seen as supporting the union of behaviors of the core instance and of 
the currently attached views. 
 
Viewpoints, reuse, and decentralized development. It has been our experience that in 
business information systems, the roles played by domain objects often correspond to 
generic business processes, and do not depend on the business domain. For example, for 
the purposes of building an information system that supports the business, leasing 
computers is more similar (software infrastructure and functionalities) to leasing cars, 
then to selling computers. Using our model of view programming, the different roles that 
an application object can play will be represented by views. When those roles correspond 
to different business processes, then the logic of the code of the views should be reusable 
across business domains. We propose a kind of a template for functional roles/views that 
is parameterized by those elements of the interface of the core object that are required by 
the functional role. This template, called viewpoint, can then be instantiated for different 
types of assets, be they trucks, buildings, machines, or computers. In the example of 
Figure 1, view 1 which uses the method f(.) of the core object, is the result of 
‘instantiating’ a viewpoint that requires that the core object support a method f(). 
 
Programming with views. Our approach consists of supporting view programming into 
a host language such as Java or C++ by adding a “views veneer” which language pre-
processors will translate into vanilla flavor constructs from the host language. We will 
focus on the code transformations that need to take place, and on the run-time mechanics 
of our approach. 

Consider the example of a customer relationship management (CRM) application. 
Let Customer be the core object (see Table 1). In addition to information about contact 
info and outstanding orders, we could support two additional functional areas, e.g. the 
customer credit profile (CreditWorthinessCustomer view), and a loyalty (“frequent 
miles”) program (LoyaltyCustomer view). Table 1 shows one possible implementation 
of the views, i.e. as regular Java classes that contain view-specific data and functions, but 
that forward core data and functions to the core instance. The view classes are generated 
by instantiating a corresponding template (viewpoint) for the class Customer (much like 
Büchi & Weck’s generic wrappers). Core objects store and manipulate their views 
through data structures and functions inherited from the class Viewable.  

A Customer object is created by instantiating the core class. Later on, views may be 
added or removed to the core object dynamically, using an inherited API from 
Viewable. When we first add a view to a core instance, an instance of view class is 
created and linked with the core instance. That view object can later be deactivated, re-
activated, or deleted. Deactivation turns off the behavior of a view, but preserves its state. 
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The behavior of an object with views depends on the set of views that are currently 
added (and active). When the object receives a message, its answer depends on whether 
its core functionality or one of the attached views supports the requested behavior. If no 
implementer is currently available for the requested behavior, the request is denied. In a 
reflective language such as Smalltalk, this behavior can be accomplished by modifying 
the dispatching mechanism. In a typed and (mostly) statically bound language such as 
C++, this behavior can be obtained by performing the appropriate compile-time code 
transformations. Java, which offers reflexive capabilities, does not support message 
intercession easily, and a code transformation approach is also used1 

 

class Customer extends Viewable { 
 private String name; 
 private String number; 
 private String address; 
 private Collection orders; 
 … 
 public void addOrder(Order in){…}  
 public Iterator getOrders(){…} 
 … 
} 
class LoyaltyCustomer extends View{ 
 private Customer coreObject; 
 private String loyaltyGrade; 
 …  
 public void printCustomer() {…} 
 public void  
  printListOrOrdersMade() {…} 
 public String  getName() { 
  return coreObject.getName(); 
 } 
 … 
} 

class CreditWorthinessCustomer 
      extends View { 
 private Customer coreObject; 
 private String creditRating; 
 private float creditLimit; 
 private String accountState; 
 … 
 public void printCustomer() {…} 
 
 public String  getName() { 
  return coreObject.getName(); 
 } 
} 

 
Consider the following program excerpts: 

  import com.walmart.core.Customer; 
  import com.walmart.finance.*; 
  import com.walmart.operations.*; 
(1) Customer myCustomer = Customer.getInstanceWithID(id); 
(2) myCustomer.attach(“Loyalty”); 
(3) myCustomer.attach(“CreditWorthiness”); 
(4) float val = myCustomer.getCreditLimit(); 
(5) myCustomer.printCustomer(); 

                                                           
1 AspectJ™ also uses a code transformation approach, instead of a reflexion-based implementation. 
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In line (4) the programmer invoked a behavior that is available in the 
CreditWorthinessCustomer view on the instance of Customer, without referring 
explicitly to the view instance. The underlying mechanism is a pre-processor that replaces 
line (4) with the following line, 

(4’) float val=((CreditWorthinessCustomer)  
    myCustomer.getView( “CreditWorthiness”)).getCreditLimit(); 

because it knows that getCreditLimit() is available in the view class 
CreditWorthinessCustomer, but it does not know for sure that at the time that the 
call is made, an CreditWorthinessCustomer view is attached and active, and we 
cannot sort this out at compilation time. 

Line (5) shows the method printCustomer() which is supported by both 
LoyaltyCustomer and CreditWorthinessCustomer. We adopted the approach 
advocated by Harrison & Ossher [Harrison & Ossher, 1993], which consists of 
composing the various method implementations. Our approach relies on a universal 
composition view, which is automatically generated to contain default implementations 
for the all the multiply defined methods: 

class _CompView_Customer extends View { 
 public void printCustomer() { 
  // some combination of the implementations coming from  

// LoyaltyCustomer and CreditWorthinessCustomer 
 } 
 … 
} 

The actual code generated and the mechanics of composition views are slightly more 
complex, as they take into account the potential for broken delegation [Mili et al., 1999]. 

3 DISTRIBUTION ISSUES 

The combination of aspects and distribution is interesting for three reasons. First, 
Distribution is, itself, one of those design aspects that crosscut implementation classes, 
and that clutter the code without bringing in any new user-defined functionality. It would 
thus seem to be a perfect fit for a technique such as aspect-oriented programming, which 
appears to be particularly well suited for separating design-level concerns. Second, 
Depending on the separation of concerns technique, objects that embody several concerns 
may be fragmented, which may raise a number of issues for distribution. Third, 
considering that different functional areas usually imply different data ownership and use 
privileges, to what extent can aspect, role, or view boundaries can be used as units for 
distribution — and possibly for duplication — in a distributed application context. We 
look at these issues in turn. 
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Implementing distribution with separation of concerns techniques 

The question here is whether distribution logic can be encapsulated in components along 
the boundaries of the various separation-of-concerns techniques. There are two sides to 
this issue. First, we have to figure out where, in an object-oriented program, does 
distribution make a difference (so called join points), i.e. what needs to be changed to 
turn a regular (non-distributed) application into a distributed one. Once we do this, we 
then have to analyze the various separation-of-concerns techniques to figure out which 
technique’s abstraction boundaries [Mili et al., 2001a] best match the required changes 
to accommodate distribution. 

There have been a number of research efforts trying to categorize concerns in such a 
way that they can be matched against the panoply of techniques, both aspect-oriented and 
plain object-oriented techniques (see e.g. [Walker et al, 1999]). Turning a regular 
application into a distributed one is, for the most part, a solved problem. Existing 
distribution frameworks all use a variant of the proxy pattern, and various compilers will 
automatically generate most of the code involved in “distributing” objects (e.g. CORBA 
IDL compiler). There remain a few changes that need to be accommodated. One such 
change involves lifecycle issues. Indeed, the “creation” of remote objects is different 
from the creation of local objects. For instance, the former requires going through an 
object factory, which may itself be accessed using some sort of a naming service. We also 
need to handle remote exceptions. Indeed, remote method invocations may raise a 
number of exceptions that may either be related directly to the remoteness of objects, or 
that may be re-castings of user-defined exceptions. Both of these changes are to take 
place in the client program, but they can occur anywhere within a method.  

Both subject-oriented programming and view-oriented programming allow 
composition only at the method level. Only aspect-oriented programming supports 
composition at sub-method levels, with some restrictions (entry and return points, 
exceptions, etc.). Thus, aspect-oriented programming seems to be the best fit for handling 
these kinds of aspects, on demand. As we later see, we used AOP to introduce multi-
aspect logic into distribution (CORBA) logic. 

Note that if we are interested in supporting a distribution infrastructure with a 
configurable set of services (e.g. transactions, security), then we are faced with a new 
instance of “multiple aspects” problem, this time concerning the distribution 
infrastructure implementation itself, instead of the application that executes in the context 
of the distribution infrastructure (see e.g. [Coady et al, 2001],[Joshi & Agrawal, 2002]). 

Distributing objects embodying several aspects 

The effect of distribution on objects that embody several aspects or concerns depends on 
the separation of concerns technique that we used in the first place. If the method 
involves compile-time integration of the various aspects (concerns), then there is no 
interaction between separation of concerns and distribution since the “multi-aspect” 
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objects look no different from regular objects, and the same distribution issues will be 
raised, and the same techniques used. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

In those methods where different concerns are represented as separate objects (e.g. our 
approach and dynamic adapters (e.g. [Kniesel, 1999] and [Buchi & Weck, 2000]), then 
there are two strategies, and corresponding host of issues to be addressed. Roughly 
speaking, the first strategy consists of separating the multi-aspect “aspect” from the 
distribution aspect, and distributing multi-aspect objects like any network (aggregation) 
of related objects. In other words, a core object and all its appendages will be defined as 
remote objects, with their own interfaces, proxies, data holders, and the like. Figure 2 
illustrates this strategy. While the simplicity of this approach may be appealing, it suffers 
from a lot of problems. Consider the following (naïve) delegation-based dispatch 
algorithm: 

perform(Message m, Target o) { 
 Method meth = o.lookup(m); 
 if ( meth = null) then 
  deleg <- o.getDelegates(); 
  while (meth != null) do 
   meth = deleg.next().lookup(m) 
  enddo 
 endif 
 if (meth != null) then 
  meth.invoke(o,m) 
 else 
  o.doesNotUnderstand(m) 
 endif 
end perform 

Client site Server site 

Figure 2. The entire delegation machinery is distributed 

delegation links 
message sends 
proxy – object relationships 
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If we transpose this algorithm into the distribution context, it seems natural that the 
method invocation itself (meth.invoke(o,m)) would take place on the server side. 
However, it is not clear whether the method look-up itself happens on the client side, 
using the proxies of the various components, or on the server side. If it happens on the 
client side, then a lots of network traffic will be generated to resolve a single message 
send. Further, the client-side proxies will not be light clients, but will have to duplicate 
some of the processing logic. It thus seems more reasonable to implement the delegation-
based method dispatch on the server side. If the delegates exist only as stores of state and 
behavior for the delegator, then we may want to forget about remoting the entire 
structure, and let the dispatching happen on the server side.  

The second strategy for distributing multi-aspect objects consists of tackling both 
problems simultaneously. There are two major advantages to using this second strategy: 

• Conceptually, we could use the abstraction mechanisms provided by the 
distribution infrastructure, such as the separation of interfaces from 
implementation, to hide some of the conceptual complexities of supporting multi-
aspect objects, 

• Performance-wise, combine distribution required dispatching with multi-aspect 
required dispatching, reducing dispatch complexity and performance overhead. 

Figure 3 illustrates this second strategy. From the client side, the composite object looks 
like a single monolithic object.  

This approach does have a disadvantage, though. We may be sacrificing the dynamic 
interface evolution of client-side proxies, unless we resort to using the dynamic 
invocation interface on the client as well. This is the approach that we have taken in our 
work, as explained in the next section. 

 
 
 
 

Client site Server site 

Figure 3. The client side sees a single object. The 
delegation machinery is hidden on the server’s side. 

delegation links 
message sends 
proxy – object relationships 
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4 VIEW PROGRAMMING AND DISTRIBUTION 

Issues 

In this section, we are interested in the situation where an object with views is distributed, 
and offers different sets of functions through different client sites. In the most general 
case, it is conceivable that views, embodying function specific state and behavior, may be 
owned by different sites, and may thus reside in different sites. Figure 4 illustrates such a 
scenario for the object in Figure 1. We assume in this example that site 3 is not aware of 
the existence of a core object behind the view, or of View 1 and View 2, and the behavior 
of these should not be available to it, except indirectly as a side effect of methods called 
on the core object. For the case of sites 1 and 2, they know about view 1 and view 2, but 
don’t know about view 3, and any behavior invoked on the core object should only 
invoke the methods that are explicitly provided by view 1 and view 2 (or as side effects 
of such behaviors). 

We address our model of view programming from the perspective of a 
CORBA/RMI-like model where a single state-holding copy of an object is available over 
the network whereas different proxies/stubs route requests to that object through ORBs. 
Figure 5 illustrates such a model. We assume for simplicity that a single ORB manages 
requests on behalf of all sites. We also assume for the time being that there is no object 
replication: each of the core instance and the views reside on a single site, with proxies 
representing them elsewhere. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Distributed object with views. 
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Figure 5. A single-server, multiple-client scenario. 

 
Consider now the fact that our own parsing of client code of viewable objects also 
involves code generation, and a number of source code transformations (see section 2.4). 
For instance, a user program that uses several views of the same object will have 
messages to that object go through a composition view. However, a composition view is 
nothing but a “stub-like” class that implements the union of the interfaces (potentially) 
supported by the viewable object. This stub dispatches calls depending on which views 
are attached (and active) at that point in time (see section 2.4). Because support for 
distribution also involves generating a stub class that implements a remote interface, we 
could combine the two code generations. A distributed object configurator (DOC) 
enables architects to select, from a set of interfaces and a set of sites, which interfaces are 
going to be visible to which sites, and which sites will implement which interfaces. DOC 
will be discussed in section 5. We next look at the simplest case where all the views 
reside in the same site. 

Single server, multiple clients 

Figure 5 shows an example situation where several views reside on the same server, but 
different client sites see different subsets of those views. In this case, each client site only 
sees the version of the server side object that corresponds to its views. There are two 
issues that need to be addressed. First, how to make the same server object implement 
two or more client interfaces, and second, where to handle the dispatch of multiply 
implemented methods (methods implemented by several views or by the core class and 
one or more views). We look at these issues in turn. 
Implementing several interfaces. Existing CORBA products generate, from the same 
IDL interface, a client stub and a server skeleton. Whereas the client stub is supposed to 
be used as is, the server skeleton is supposed to be specialized or somewhat 
refined/completed to provide the full implementation of the object. There are two 
approaches to server object implementation, one based on inheritance, and the other 
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based on forwarding. With the inheritance-based approach, the object implementation 
must inherit from the generated skeleton (class CustomerSkeleton in the example 
above). With the forwarding-based approach (also referred to as tie approach), a subclass 
of the generated skeleton forwards method calls to an object. In a language that supports 
multiple inheritance, both the inheritance-based and delegation-based object 
implementation approaches allow a class to implement several interfaces. In Java, 
multiple inheritance of classes is not supported, but the same class can support several 
interfaces, which makes the tie approach appropriate for implementing several interfaces 
with the same Java class. Figure 6 illustrates this. 

We should stress that the usual “self problem” inherent in simple message 
forwarding is not an issue here: the “forwarder” does not perform any application specific 
processing whatsoever; it simply dispatches method calls coming over the wire. Thus 
there is no chance that a method on the server object would need to come back into the 
skeleton object. Note, however, that if a method on the server object needs to access a yet 
another remote object, the call is handled transparently (going through a proxy and the 
ORB) as if that other object were local. 

A final point has to do with view creation and destruction. As mentioned in section 
2.3, the first call to attach(<a view>) attaches a view, and subsequent calls have no effect. 
The same goes for requests to detach (destroy) a view. With server objects handling 
multiple interfaces, we have to keep a count of the number of clients that access a given 
interface, much like COM does. However, we have to make sure that several requests to 
detach a view that originate from the same site will count as one. One way of handling 
this is a two stage reference count strategy: the tie object maintains its own reference 
count. That count is incremented whenever a new attach(…) request is forwarded from 
the client side, and decremented whenever a new detach(…) request comes from that 
site. At the same time, the shared object implementation maintains its own count of the 
various views, which indicates how many server interfaces need a particular view. A 
server interface (tie object) no longer needs a view when its reference count goes to zero. 
Thus, whenever a tie object’s count goes to zero, it asks the shared implementation to 
decrement its reference count. When that count goes to zero, the view is destroyed. 

Things get complicated when several client processes use the same interface, and 
thus share the same server-side tie object. This could cause dangling references if some 
client site requests more detach(…) than it had requested attach(…), thus 
inadvertently making a view unavailable to other clients who still need it. This could call 
for a per-client site management of reference counts on tie objects. 
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Figure 6. Server Object(s) implement several client interfaces. 

 
Dispatching to multiply-implemented methods. In a proxy-based implementation of 
distribution, the client side code only forwards requests to the server side code. When 
dealing with objects with views, we know that some method calls won’t be answered if at 
the time the call is made, the server object does not have the corresponding view. We 
have the option of simply forwarding method calls to the server, and let the server side 
dispatch method calls or raise exceptions if a method is not currently supported. 
Alternatively, we could handle the dispatch on the client side, and then ensure that any 
call that goes to the server will get answered.  

The first solution has the advantage of simplicity, but can be costly, performance-
wise, depending on the relative frequency of failing method calls. The second alternative 
has the advantage of distributing the dispatching between client and server, and obviating 
the need for an expensive round-trip in those cases where the method called is not 
supported. The second reason why we might still need client-side view management, 
anyway: if we have two client programs that use the same interface (and thus, refer to the 
same server-side tie object) but that may use different view activations: we need to have a 
per-proxy view management. Finally, with client-side view management, only view 
creation and destruction need to go the server; view activation and deactivation can be 
handled locally. 

With client-side method dispatching, the client side stub is similar to the composition 
view described earlier in the sense that it has the combined interface of the core object 
and the available views; based on the views currently active on the object, it may dispatch 
to different server side method combinations. Those method combinations will have 
different names generated automatically using some mangling scheme.  
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Figure 7 shows an example stub based on this implementation. In this case, the stub 
has an additional instance variable (viewStates) that contains the status of the various 
views—referred to by name on the client side. The stub supports methods to 
attach/activate and deactivate/detach views. Attaching a view will request the attachment 
to the server, and set the local variable (viewStates) accordingly. Deactivating a view 
is a local operation, and only works on viewStates. This stub code for the method 
‘printCustomer()’ illustrates the name mangling scheme used to dispatch to different 
method combinations on the server side: the method ‘printCustomer()’, which is 
supported by the views LoyaltyCustomer and CreditWorthinessCustomer, has 
three versions, ‘_LoyaltyCustomer_printCustomer()’, ‘_CreditWorthiness-
Customer_printCustomer()’, and the composition ‘_CreditWorthinessCus-
tomer_LoyaltyCustomer_printCustomer()’. The prefix is generated by the 
method ‘getActiveViewsSupportingMethod(String signature)’. 

package CustomerLoyaltyCustomerCreditWorthinessCustomer; 
public class _CustomerStub extends ObjectImpl implements  
 CustomerLoyaltyCustomerCreditWorthinessCustomer.Customer { 
 private Hashtable viewStates; 
 private static Hashtable methodsToViews; 
 public boolean attachView(String viewName) { 
   try { 
  Request _req = _request("_attachView"); 
    req.add_in_arg().insert_string (viewName); 
  _req.invoke(); 
   catch (ViewAttachmentException vae){ return false;} 
   finally { 
   viewStates.put(viewName,View.Active);return true;} 
 } 
 public void deactivateView(String viewName) { 
   // View activation and deactivation are local 
    viewState.put(viewName,View.Idle); 
 } 
 public void printCustomer() throws UnavailableBehavior { 
  String prefix = GetActiveViewsSupportingMethod(  

“printCustomer##”); 
  if (prefix.length()==0) throw new  
     UnavailableBehavior(“printCustomer ()”,viewStates); 
  String reqName = prefix + “_” + “printCustomer”; 
    Request_req = _request(reqName); 
    … 
 } 
 … 
} 

Figure 7. Client side dispatching
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5 IMPLEMENTATION 

Work on view programming has been ongoing for several years at the University of 
Quebec at Montréal. We have already implemented prototype support for view-oriented 
programming in C++ [Mili et al., 1999]. Our C++ implementation supports a small subset 
of C++, and does not address distribution but helped us identify a number of problems 
that we set out to solve in our Java-based distributed solution [Mili et al., 2001]. A 
number of the difficulties we had with the C++ implementation were related to difficulty 
of separating interfaces from implementations, both at the language level, and in terms of 
the programming model that needs to be supported in the context of a monolithic 
application. Java does support this separation. Further, the separation between interfaces 
and implementations is at the heart of the programming model for distribution, enabling 
us to concentrate view machinery in one place (see section 3). 

In reference to the implementation strategies discussed in section 3.2, and to the 
issues raised in section 4.2, we decided to address distribution and multi-aspect issues in 
a single framework. As mentioned in section 3.2, and illustrated in some of the choices 
discussed in section 4.2, doing so enables us to simplify the overall scheme, and to 
enhance the overall performance of the combination of these two features. 

As illustrated by our discussion in section 4.2, support for distributed multi-aspect 
objects involves the following changes, as compared to plain distribution, a) the 
implementation objects are “regular” objects with views, i.e. using an aggregation-based 
simulation of delegation, and b) some view-specific processing at both the stub and 
skeleton. This view specific processing consists, on the client side, of three changes, i) 
addition of new infrastructure remote methods (e.g. attach/detach view), ii) addition of 
new local methods and variables (activate/deactivate, and viewStates), and iii) 
modification of dispatch of view-defined methods (see example of ‘release()’ method). 
Server-side changes include support for attach/detach and the corresponding reference 
counting logic. 
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Figure 8 shows the overall structure of our tool set. We numbered the various 
processes for easy reference. At the beginning of the process, Java classes (core objects) 
and viewpoints are translated to CORBA-IDL (process (1)) and CORBA IDL-like syntax 
(process (2)), respectively. The Distributed Object Configurator (DOC) uses these 
interfaces and deployment information to generate the view and distribution 
infrastructure code. Specifically, deployment data describes: 

1) Which views will need to be supported, overall. These views will be generated by 
mapping the viewpoint IDL to core objects IDL, yielding view IDL (process (3)). 
It is assumed that each one of these views will be implemented somewhere—all 
by the same server for now, 

2) Where do the various object components (core classes, view classes) reside. For 
the time being, we assume that the core object implementation and its views will 
reside on a single server. This will be generalized later to the case where core 
object and views reside on separate machines,  

3) Which client site needs which interfaces. This will be used to generate a single 
IDL interface per client site, which, in turn will be used to generate a client stub 
and a server skeleton per client interface  (one per combined interface). This is 
the work of process (4). 

For those methods that have multiple implementations, we leave it up to the developers to 
specify the composition. For example, the method printCustomer is supported by both 
the credit worthiness view, and the customer loyalty view. Using the name mangling 
scheme discussed in section 4.2, we need to provide an implementation for: 
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public void _CustomerCreditWorthiness_CustomerLoyalty_print- 
Customer(); 

We want to be able to provide such implementations but without editing either the source 
file (e.g. the Java core classes) or the automatically generated code (e.g. the server side 
skeletons). Thus, the tool (process (4)) generates, a) an empty method stub (with a single 
return statement), and b) an aspect that developers can edit, and that includes the actual 
implementation. The actual aspect looks as follows (simplified for presentation): 
 

package ClientFideliteClientEstimationCreditClientarabica; 
… // a bunch of imports 
 
aspect _CreditWorthinesCustomer_LoyaltyCustomer_printCustomer{ 
  pointcut _CreditWorthinessCustomer_LoyaltyCustomer_printCus-
tomer():args()&& call (String    _CompView_Customer._Credit- 

WorthinessCustomer_LoyaltyCustomer_printCustomer()); 
  before() throws Exception: _pre_CustomerCreditWorthi-
ness_CustomerLoyalty_printCustomer () { 
  // Developers edit this method 
  try { 
     ((CreditWorthinessCustomer)getView("CreditWorthiness” 

+”Customer")). printCustomer(); 
     ((LoyaltyCustomer) getView("LoyaltyCustomer ")).print- 

 Customer(); 
  } catch(Exception ex){ex.printStack();} 
  } 
} 

In this case, the implementation is included in a new method that will be called before the 
body of the multiple method. This is one of several flavours of aspects we are 
experimenting with. In addition to generating the aspects for the multiple methods, the 
processor (4) generates a script for the AspectJ compiler to weave all those aspects into 
the main body of the server-side code. The actual code for the server views is generated 
by the same tool we use for non-distributed applications (processor (5)). 

Figure 9 shows a screendump of a preliminary implementation of DOC. This screen 
shows the selection of core classes, viewpoints, and the corresponding views. 
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 Figure 9. Specifying the functionality to be provided by servers to clients.

 

6 CONCLUSION 

Our work addresses the problem of supporting several functional domains within the 
same application, by composing at will functional fragments developed by independent 
third parties. Those same situations that require, or could use, decentralized development 
of functional domains also require distributed ownership of the functional domain data, 
and distributed execution of the resulting programs. View programming seems like a 
perfect fit to the extent that we have resolved most of the issues dealing with the 
uniqueness of object reference, and the multiple-dispatch of methods—method supported 
by several views. There remain a number of issues dealing with optimizing the 
implementation of distributed view programming which we continue to explore, both 
theoretically and empirically.  
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