
Testing Polymorphic Behavior

Neelam Soundarajan and Benjamin Tyler
Computer and Information Science, Ohio State University, Columbus,
OH 43210

Our goal is to investigate specification-based approaches to testing OO components.
That is, given a class C and its specification, how do we test C to see if it meets its
specification? Two important requirements that we impose on the testing approach
are that it must not require access to the source code of the class under test; and
that it should enable us to deal with the polymorphic behavior of classes. In this
paper, we report on our work towards developing such a testing approach.

1 INTRODUCTION

Our goal is to investigate specification-based approaches to testing OO components.
Suppose we are given an implementation of a class C and the specifications of its
methods in the form of pre- and post-conditions (and possibly a class invariant).
How do we test the implementation of C to see if it meets its specifications? We are
not specifically interested in the question of how to choose a broad enough range
of test cases [12] although that would, of course, have to be an important part of a
complete testing methodology for OO systems. Rather, we want to develop a general
approach that can be used to test that C meets its specifications; once we do this,
we should be able to combine it with an appropriate methodology for choosing test
cases.

We impose two important requirements on the testing approach. First, as far as
possible, it must not require access to the source code of the class under test. In
other words, we want to use a black-box approach [1] to testing. This is important
if we are to be able to test not just components we designed and implemented
but components that we may have purchased from a software vendor; the software
vendor will typically not provide source code for these components, hence a black-
box approach is necessary in such a situation. Second, the testing approach should
enable us to suitably deal with classes that exploit polymorphism1. This is important
because, as is widely recognized, see for example [10], the OO approach derives much
of its power from the mechanism of polymorphism. Therefore it is clearly important
in a specification-based testing approach, to include testing of polymorphic behavior.

1Throughout this paper by ‘polymorphism’, we mean inclusion polymorphism [2].

Cite this article as follows: Neelam Soundarajan, Ben Tyler: Testing Polymorphic Behavior ,
in Journal of Object Technology, vol. 1, no. 3, Special issue: TOOLS USA 2002 proceedings,
pages 173–188, http://www.jot.fm/issues/issue 2002 08/article10

http://www.jot.fm/issues/issue_2002_08/article10


TESTING POLYMORPHIC BEHAVIOR

Unfortunately, however, there is a potential for conflict between these two re-
quirements. Suppose p() is a polymorphic method of C. As we will see in the next
section, specification of p()’s polymorphic behavior will have to include information
about the methods that p() invokes during its execution. Testing to see if such a
specification is satisfied cannot, it would seem, be done by waiting until p() finishes
execution and then checking the state of the object. Rather, we would have to be
concerned with the details of the body of p(); indeed, as we will see, the obvious
approach would seem to be to add some additional code to p()’s body to record the
information that p()’s specification refers to. But this is clearly incompatible with
the black-box approach. Remarkably, as we will see later in the paper, polymor-
phism itself provides a satisfactory solution to the problem. We will show how to
construct a test class Test C that exploits polymorphism to ‘intercept’ the execution
of p() at key moments and record the needed information about the behavior of p(),
without having any access to the body of p() as defined in C.

A particularly compelling example of the need for testing against specifications
that characterize the sequence of method calls that polymorphic methods make dur-
ing their execution is provided by OO frameworks. A framework F typically consists
of a number of key polymorphic methods that invoke appropriate other methods at
key points. A complete application can be built by suitably redefining, in derived
classes of some of F ’s classes, the methods invoked by the polymorphic methods.
If F has been well-designed, a whole range of applications can be built with just
the effort of redefining these methods in the derived classes, while reusing all the
polymorphic methods defined in F . Clearly, the specification of F must provide
information about the sequence of method calls that its polymorphic methods make
since this (in conjunction with the behavior of the methods redefined in the de-
rived classes) is what will determine the behavior that the application will exhibit.
Therefore, testing F requires us to test against such specifications of its polymorphic
methods. We will return to this in the final section of the paper.

The main contributions of the paper may be summarized as follows:

• It identifies a key problem in black-box testing of polymorphic behavior.

• It develops a solution to the problem that exploits polymorphism in such a
way that it enables us to test that a given method exhibits the (polymorphic)
behavior required by its specification, without needing any access to the body
of the method under test.

• It illustrates the approach by applying it to a simple example.

The rest of the paper is organized as follows. In Section 2 we consider what
type of information has to be included in specifications of polymorphic behavior
and the problem we face in black-box testing of such behavior. In Section 3 we use
a simple example to show how polymorphic behavior can be formally specified. In
Section 4 we present our approach to testing such specifications without accessing
or modifying the body of the method under test, and illustrate the solution on the

174 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



2 BACKGROUND AND MOTIVATION

example from the previous section. In Section 5 we briefly discuss related work on
testing of OO systems. In the final section, we summarize our approach to testing
polymorphic behavior and consider future work.

2 BACKGROUND AND MOTIVATION

Suppose C is a class that consists of a polymorphic method p() that invokes two
other methods h1() and h2() of C. Suppose also that in a derived class D of C, we
redefine h1() and h2() (and inherit p() from the base class). If p() is applied to an
object that is an instance of D, polymorphism requires, and the run-time dispatch
system used to implement polymorphism ensures, that the h1() and h2() that are
invoked during this execution of p() are the ones defined in D rather than the ones
defined in the base class. Thus the resulting behavior of p() will be modified –we
will use the term ‘enriched’– because of the richer behavior implemented in D.h1()
and D.h2() although p() itself was inherited without change from the base class;
this, of course, is exactly what makes polymorphism such a powerful tool.

The precise enrichment that p()’s behavior acquires as a result of the redefini-
tions of h1() and h2() will depend critically on the particular methods p() invokes,
the number of times it invokes each, the order it performs these invocations in, the
argument values it passes in each invocation, etc. It is for this reason that poly-
morphic methods such as p() are called template methods and the methods such as
h1() that it invokes are called hook methods in the design patterns literature [5];
the template method provides the ‘template’ of invocations of the hook methods,
and the hook methods provide ‘hooks’ that the derived class designer can use to
implement behavior appropriate to his or her derived class with the result that the
template method’s behavior is also appropriately enriched. From the point of view
of specification, this means that a specification of C.p() cannot just give us informa-
tion on what the values of C’s member variables will be when the method finishes
execution. Rather, it must include suitable information about the calls p() makes
to the hook methods. Given such a specification, we will be able, when reasoning
about the derived class, to ‘plug-in’ the richer behavior of D.h1() and D.h2() into
the base class specification of p() to arrive at the enriched behavior that p() will
exhibit in D, i.e., when it is applied to objects of type D.

In the next section we will see some details of such a specification of p(). In our
specification, we will use a trace variable corresponding to each template method, as
auxiliary variables [13]; the hook method calls that the template method p() makes
will be represented by recording suitable information about these calls on the trace
variable, which we will generally denote by the symbol τ , of p(). As a result, the
post-condition of p() will include conditions that τ must satisfy in the same manner
as it imposes conditions that the other variables, in particular the member variables
of C, must satisfy when p() finishes execution. Such a specification, as we will
see, will enable us to arrive at the derived class behavior of p(), resulting from the
behaviors of the hook methods as defined in the derived class, without having to

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 175



TESTING POLYMORPHIC BEHAVIOR

reconsider the details of the code body of p().

Now consider how we can test whether the methods of a class C satisfy their
specifications. Since we want to use black-box testing, a natural approach [17]
would be to introduce a test class Test C with a test method test m() corresponding
to each method m() of C. Test C would contain an object tc of type C that would
serve as the ‘test object’. The individual test methods, test m() would work as
follows: First check that the state of tc satisfies the pre-condition of m(); if the
pre-condition is not satisfied, we do not continue with the test since a basic tenet of
the design-by-contract principle is that nothing is guaranteed about m()’s behavior
if its pre-condition is not satisfied at the time of its invocation so there is nothing
to test in this case2; next invoke the method m() on tc; finally, when m() returns,
check whether the current state of tc (and any other result that m() returns) satisfy
the post-condition of m(); if the post-condition is not satisfied, then we have found
an instance where the method does not meet its specification.

If the method in question is a polymorphic method p(), its post-condition, as we
saw, will include conditions on the trace variable τ associated with that method. But
there is nothing in the actual code body of p() that will add the needed information
to τ when p() makes its hook method calls since τ is not an actual variable that the
code of p() manipulates in any way. Rather it is an auxiliary variable introduced
by the specification and reasoning system. So how do we check if p() meets such
a specification? One possible solution would be introduce τ as a new variable in
Test C. But this, by itself, is not sufficient. We also need to ensure that τ is
updated appropriately each time p() makes a hook method call to add information,
to τ , about this particular call; as we will see, information has to be added to τ
also when the hook method call finishes and returns to p(). This clearly requires
additional code but where would we put this code? Putting this additional code
in test p() will not work since it is p() that makes these calls, so control will be
in p() immediately before and after each of these calls. In fact, according to the
structure of the test methods we saw above, control does not return to test p() until
p() completes execution. By that point, details about which hook methods p() called
during its entire execution, the argument values it passed in those calls, etc., are no
longer available. For example, suppose in p() there was a loop and there was a hook
method call inside that loop; how can we tell, once p() finishes, how many times
it executed the loop, i.e., how many times it called the hook method? The clear
alternative would seem to be to put the code for updating τ in p(), immediately
before (and immediately after) the hook method calls, but this would violate our
basic requirement of black-box testing. In black-box testing we do not even have
access to the code of the methods under test, let alone trying to insert new code
into them.

This is the fundamental conflict between our two requirements: On the one hand,
the requirement that we be able to test polymorphic behavior means that we need

2In a complete testing methodology, we would have to find ways to perhaps modify the state
of tc so that it satisfies the pre-condition of m(), rather than simply abandoning the test.

176 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 SPECIFYING POLYMORPHIC BEHAVIOR

to be able to record, on the trace variable, information about each hook method
call that the polymorphic method makes as it executes which seems to require us to
insert code for this purpose into the body of the polymorphic method under test.
On the other hand, the requirement of black-box testing forbids any access to the
method under test. It turns out, as we will see in Section 4, that polymorphism
itself comes to the rescue. We will see how we can use polymorphism in the test
class Test C to ensure that each time p() (as defined in C) makes a hook method
call, the call is intercepted, and appropriate information about the call is added to
the trace and then the call proceeds normally; similarly, when the call finishes, the
return will be intercepted, appropriate information about the results returned are
added to the trace, and then control returns to p(); and none of this will require
any change in (or even access to) the code of C.p(). This will allow us to test the
polymorphic behavior of p() while staying within the confines of black-box testing.

3 SPECIFYING POLYMORPHIC BEHAVIOR

Let us consider a simple example starting with the base class Eater. Objects of this
class live fairly simple lives eating donuts and hamburgers, increasing their caloric
intake in the process. The definition of the Eater class (using a C++/C#-like syntax)
appears in Figure 1.

class Eater {
protected int Cals_Eaten = 0;

public virtual void Eat_Donuts(int n)

{ Cals_Eaten = Cals_Eaten + 200 * n; }
public virtual void Eat_Burgers(int n)

{ Cals_Eaten = Cals_Eaten + 400 * n; }
public void Eat_1200_Cals()

{ Eat_Donuts(2); Eat_Burgers(2); }
}

Figure 1: Base class Eater

As their names suggest, the member variable Cals Eaten maintains the number
of calories consumed by the Eater object, while Eat Donuts() and Eat Burgers()

are methods that increase it. These methods’ specifications3 are easily given:

pre.Eater.Eat Donuts(n) ≡ (n > 0)
post.Eater.Eat Donuts(n) ≡ (Cals Eaten = Cals Eaten@pre + 200 * n)

3Throughout this paper, we will use concrete specifications, i.e., specifications in terms of the
member variables of the class in question. When dealing with more complex classes, we would
of course have to introduce a suitable conceptual model of the class, provide a mapping from the
concrete to conceptual model, and express the specifications in terms of the conceptual model [9].
Note also that we have included the name of the class in the specs since we will also consider the
behavior of these methods in the derived class. Thus, (1) specifies the behavior of these methods
when applied to an instance of the Eater class.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 177



TESTING POLYMORPHIC BEHAVIOR

pre.Eater.Eat Burgers(n) ≡ (n > 0)
post.Eater.Eat Burgers(n) ≡ (Cals Eaten = Cals Eaten@pre + 400 * n) (1)

In the post-conditions we use the OCL-notation [18] “@pre” to refer to the value of
the variable at the start of the execution of the method.

Eat 1200 Cals() is a polymorphic method and will be the one of most interest
to us. It does its job by calling the hook methods Eat Donuts() and Eat Burgers()

(rather than by direct manipulation of Cals Eaten). One possible specification for
this method would be as follows:

pre.Eater.Eat 1200 Cals() ≡ true
post.Eater.Eat 1200 Cals() ≡ (Cals Eaten = Cals Eaten@pre + 1200) (2)

What is missing from (2) is information about the hook method calls that it makes
during execution. As a result, although (2) is correct in what it specifies, it proves
inadequate for reasoning about the enriched behavior that this method will exhibit
in the derived class, to which we turn next.

class Eater Jogger : Eater {
protected int Cals Burned = 0;

public void Jog() { Cals Burned = Cals Burned + 100; }
public override void Eat Donuts(int n)
{ Cals Eaten = Cals Eaten + 200 * n; Cals Burned = Cals Burned + 5 * n;}

public override void Eat Burgers(int n)
{ Cals Eaten = Cals Eaten + 400 * n; Cals Burned = Cals Burned + 5 * n;}

}

Figure 2: Derived class Eater Jogger

Objects of the derived class Eater Jogger in Figure 2 exhibit slightly health-
ier lifestyles than those of the base class Eater due to the enrichments provided
by the additional data member Cals Burned, the entirely new method Jog(), and
the slight redefinitions of Eat Donuts() and Eat Burgers(). As we would expect,
Cals Burned keeps track of the calories expended through the act of jogging as
well as eating hamburgers and donuts. Of course, we still take in calories through
the act of eating, so we must increase Cals Eaten when calling Eat Donuts() and
Eat Burgers() as we did in the base class4. The specifications for the methods
redefined in Eater Jogger and for its new method are straightforward:

pre.Eater Jogger.Jog() ≡ true
post.Eater Jogger.Jog() ≡ (Cals Eaten = Cals Eaten@pre ∧

Cals Burned = Cals Burned@pre + 100)

pre.Eater Jogger.Eat Donuts(n) ≡ (n > 0)
post.Eater Jogger.Eat Donuts(n) ≡ (Cals Eaten = Cals Eaten@pre + 200*n ∧

Cals Burned = Cals Burned@pre + 5*n)

4If these methods were at all complex, it would have been appropriate to invoke the base class
methods in their definitions; here, the only task to be performed by the base class portion is to
update Cals Eaten, so we have just repeated the code.

178 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



3 SPECIFYING POLYMORPHIC BEHAVIOR

pre.Eater Jogger.Eat Burgers(n) ≡ (n > 0)
post.Eater Jogger.Eat Burgers(n) ≡ (Cals Eaten = Cals Eaten@pre + 400*n ∧

Cals Burned = Cals Burned@pre + 5*n) (3)

Let us now turn to the behavior of the template method Eater Jogger.Eat 1200 Cals()

inherited from the Eater class. It is clear from the body of this method, as defined
in Figure 1, that during its execution, the value of Cals Burned will increase by 20
since the calls to Eat Burgers() and Eat Donuts() will each be dispatched to the
methods defined in the Eater Jogger class, and each of these calls will increment
Cals Burned by 10. But we cannot arrive at this conclusion just given the specifi-
cations in (2); in particular, that there is no way to appeal to the specifications in
(3) for the behavior of the redefined hook methods that Eat 1200 Cals() invokes.
The problem is that there is nothing in (2) that tells us that Eat 1200 Cals(),
in fact, invokes Eat Donuts() or Eat Burgers(). Indeed, if we rewrote the body
of Eat 1200 Cals() (in the base class) so that it ate 6 donuts, i.e., invoked only
Eat Donuts() with 6 as the argument, or ate 4 donuts and a hamburger, or ate 3
hamburgers, or just directly incremented Cals Eaten by 1200, it would still satisfy
the specification (2). But for each of these different implementations, the final value
we will have in Cals Burned when Eater Jogger.Eat 1200 Cals() finishes, will be
different (and in none of these cases would it be equal to (Cals Burned@pre + 20)).

Consider the following more informative specification:

pre.Eater.Eat 1200 Cals() ≡ (τ = ε)
post.Eater.Eat 1200 Cals() ≡ [ (Cals Eaten = Cals Eaten@pre + 1200) ∧

(|τ | = 2)∧(τ [1].m = “Eat Donuts”)∧(τ [1].p = 2)∧
(τ [2].m = “Eat Burgers”) ∧ (τ [2].p = 2) ] (4)

τ denotes the trace of hook method calls that Eat 1200 Cals() makes during its
execution. At the start of Eat 1200 Cals(), τ is ε, the empty sequence, since
Eat 1200 Cals() has not called any hook methods yet. Each hook method call
(and corresponding return) is recorded by appending a single element to τ . This
element consists of a number of components, including the name of the method in
question, the parameter and object values immediately before the call, the parameter
and object values after the call, etc.; for full details, we refer the reader to [16]. Here
we are interested only in the identity of the hook method and the initial value of
the parameter value for each call. Thus the post-condition in (4), in particular the
clause (|τ | = 2) where |τ | is the length, i.e., the number of elements, of τ , tells us
that when Eat 1200 Cals() finishes, it would have made exactly two hook method
calls. The next clause tells us that the identity of the method called in the first
of these two calls is “Eat Donuts”, and the clause following that tells us that the
parameter value passed in this call is 2. Similarly the next two clauses tell us that
the next method called is “Eat Burgers” and the parameter value passed in this call
is also 2.

This specification can then be combined, using the enrichment rule
of [16], with the specification in (3) of Eater Jogger.Eat Donuts() and

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 179



TESTING POLYMORPHIC BEHAVIOR

Eater Jogger.Eat Burgers(), to arrive at the following:

pre.Eater Jogger.Eat 1200 Cals() ≡ true
post.Eater Jogger.Eat 1200 Cals() ≡ [ (Cals Eaten = Cals Eaten@pre + 1200) ∧

(Cals Burned = Cals Burned@pre + 20) ] (5)

This asserts, as expected, that Eater Jogger.Eat 1200 Cals() increases Cals Eaten

by 1200 and Cals Burned by 20. Informally speaking, what we have done here
is ‘plug-in’ the additional information provided by the derived class specs (3) of
the hook methods, into the specification (4) of the template method, to arrive
at the enriched behavior of the template method in the derived class. Since our
focus here is on testing, we will not go into the formal details of the rule cor-
responding to this ‘plugging-in’ process, referring the interested reader to [16].
But even without these formal details, it should be clear that the information
provided in (4) is essential if we want to be able to understand the enriched
behavior that Eater Jogger.Eat 1200 Cals() acquires as a result of the en-
riched behavior implemented in the hook methods Eater Jogger.Eat Donuts() and
Eater Jogger.Eat Burgers(), that it invokes. This means that if we are to satis-
factorily test the behavior of the body of Eat 1200 Cals() as defined in Figure 1,
it must be against a specification such as (4), rather than the simpler specification
such as (2) which does not include information about the hook methods that this
template method calls. In the next section we will see how to define a test class
Test Eater that will allow us to do this.

4 TESTING THE SPEC

Let us now see how we can build a test class, Test Eater to test if the methods
of Eater behave according to their specifications. A first attempt at Test Eater,
consisting only of a method to test the behavior of Eat Donuts(), appears in Fig-
ure 3. t Eater is the test object, rg is an object of type Random which is to be used

class Test Eater try1 {
private Eater t Eater; // test object
private Random rg = new Random();
public void test Eat Donuts() {
int n = rg.Next(99);
if( n > 0 ) {

int old n = n;
int old Cals Eaten = t Eater.Cals Eaten; // problem!
t Eater.Eat Donuts(n);
assert(t Eater.Cals Eaten == old Cals Eaten + 200*old n); }

}
}

Figure 3: Test class Test Eater try1

for generating random parameter values for the tests, and test Eat Donuts() the

180 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 TESTING THE SPEC

test method corresponding to Eat Donuts(). We generate a random integer n to
represent the number of donuts t Eater is to consume, and if the pre-condition of
Eat Donuts() (as specified in (1)) is satisfied, we invoke Eat Donuts() on t Eater.
However, before we invoke the method, we must first save the state (i.e., the values
of n and t Eater.Cals Eaten) so it can be used when asserting the post-condition
after the call has completed. Saving t Eater.Cals Eaten is a bit of a problem since
Cals Eaten is a protected member of the Eater class (Fig. 1) and so is not directly
accessible in Test Eater. Let us ignore this problem for now. Once Eat Donuts()

finishes execution, its post-condition must be satisfied, using appropriate substitu-
tions such as replacing Cals Eaten with t Eater.Cals Eaten. Also, we replace
occurrences of “@pre” by references to the starting values of the corresponding vari-
ables, which we saved in the “old” variables5. The assert that appears following the
call to Eat Donuts() requires the method’s post-condition, with the substitutions
just described, to be satisfied. If it is not, we will get an appropriate error mes-
sage alerting us to the problem, and we have found a mistake in the Eat Donuts()

method.

The test method for test Eat Burgers() is similarly written, so will we omit
it. Consider next the template method Eat 1200 Cals(). If we were only inter-
ested in the specification (2) which gives us information only about the effect that
Eater.Eat 1200 Cals() has on the data members of the Eater class, this too would
be straightforward. But as the analysis in the last two sections showed, this is in-
sufficient; we also need to test that Eater.Eat 1200 Cals() meets its polymorphic
behavior as specified in (4).

However, as we saw in Section 2, there are some key problems in doing this.
First, the trace τ is not a member variable of the Eater class. This can be ad-
dressed by simply introducing it as a member of the test class. The more serious
problem is that τ has to record appropriate information about the hook method
calls that Eat 1200 Cals() makes during its execution; this cannot be done in the
test method test Eat 1200 Cals() before it calls Eat 1200 Cals() because at this
point we have no way of knowing which particular hook methods Eat 1200 Cals()

will call during its execution, nor can we do it after after Eat 1200 Cals() re-
turns because again at this point we have no way of knowing which particular hook
methods Eat 1200 Cals() did call during its execution. Instead, we need to ‘track’
Eat 1200 Cals() as it executes; whenever it gets ready to make a hook method call,
we have to ‘intervene’, record appropriate information about the call – in particular,
the name of the method called, the parameter values, the state of the object at the
time of the call – and then let the call proceed; once the hook method finishes execu-
tion, we again need to intervene and record information about the results returned
and the (current) state of the object before allowing the rest of Eat 1200 Cals()

to continue. One way to do this would be to insert the appropriate statements

5If the parameters and data members in question are more complex or are references to objects,
the task of saving the ‘old values’ is much more involved; in general we will need suitable clone
[10] operations for this purpose. We will not concern ourselves with this issue here since this is
orthogonal to the polymorphism question.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 181



TESTING POLYMORPHIC BEHAVIOR

to update the value of τ before and after each hook method call in the body of
Eater.Eat 1200 Cals(); but this would not only require access to the source code
of that method, it will require us to modify that source code, and this is clearly
incompatible with black-box testing.

Our solution is to define the testing class as a derived class of Eater and
exploit polymorphism in it. This test class, Test Eater, appears in Figure 4.
Test Eater.tau is the trace variable in which we will record information about the

class Test Eater : Eater {
protected trace tau; // trace variable
public override void Eat Donuts(int n) {

// add element to tau to record info such as name of method
// called (Eat Donuts), parameter value (n) etc., about this call;
base.Eat Donuts(n);
// add info to tau about the result returned and current state.

}
// Eat Burgers() will be similarly defined.
public void test Eat 1200 Cals() {
if (true) {

// Ok, since Test Eater extends Eater
int old Cals Eaten = this.Cals Eaten;
tau = ε;
this.Eat 1200 Cals();
// assert trace-based post-condition

}; }
}

Figure 4: The improved test class Test Eater

sequence of hook method calls that Eat 1200 Cals() makes during its execution.

Let us see how Test Eater.test Eat 1200 Cals() as defined in Fig.
4 works by using the sequence call diagram in Fig. 5 to explain how
Test Eater.test Eat 1200 Cals() functions. The six vertical lines in the fig-
ure, each labeled at the top with the name of a method (the three on the left
being from the Test Eater class, the three on the right from the Eater class),
represent time-lines for the respective methods. The initial call to the method is
represented by the solid arrow at the top-left of the figure. The method starts
by checking –this is represented by the point labeled with a diamond with a sin-
gle question mark inside it– the pre-condition (which is just true in this case).
Next it initializes tau to ε and saves the initial state in the old variable; this
point is labeled (1) in the figure. Next, it calls Eat 1200 Cals() (on the this

object). Since Eat 1200 Cals() is not overridden in Test Eater, this is a call to
Eater.Eat 1200 Cals() (Fig. 1). This call is represented by the solid arrow from
the time-line corresponding to Test Eater.test Eat 1200 Cals() to the line cor-
responding to Eater.Eat 1200 Cals().

Consider what happens when this method executes. First, it invokes

182 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 TESTING THE SPEC

��
@@��
@@?

��
@@��
@@?

-

��
@@��
@@

-


�	�

�	�
??

Check pre-condition

Check post-condition

Information saved on trace

Trace initialization or
data member update

Method call

Method return

LEGEND

N

N t

�

-
�	�

�	�

�

-
�	�

�	�

-

��
@@��
@@

-

�

-

�

-

�

�


�	�

�	�


�	�

3

6

1

Eat Donuts(n)

Eat Burgers(n)

Eater

Eat 1200 Cals()

Eat Donuts(n)

Eat Burgers(n)

??

Test Eater

Dispatch to test class

Dispatch to test class

5t

7t

2t

4t

test Eat 1200 Cals()

Figure 5: Sequence Call Diagram for Test Eater.Eat 1200 Cals()

Eat Donuts() which we have overridden in Test Eater, so this call will be
dispatched to Test Eater.Eat Donuts() since the object that Eat 1200 Cals()

is being applied to is of type Test Eater. This dispatch is represented
by the solid arrow from the time-line for Eat 1200 Cals() to that for
Test Eater.Eat Donuts() Now Test Eater.Eat Donuts() is simply going to
delegate the call to Eater.Eat Donuts() (represented by the arrow from
Test Eater.Eat Donuts() to Eater.Eat Donuts()); but before it does so it records
appropriate information about this call, such as the name of the hook method
called (‘Eat Donuts’), the parameter value (n), etc., on the trace variable tau;
this action is labeled by (2t) in the figure. Once Eater.Eat Donuts() finishes (af-
ter performing its action consisting of updating Eater.Cals Eaten, represented by
the point labeled (3)), control returns to Test Eater.Eat Donuts(), represented
by the dotted arrow from Eater.Eat Donuts() to Test Eater.Eat Donuts().
Test Eater.Eat Donuts() now records additional information (about the re-
sult returned, current state of the object, etc.) on tau (represented by the
point labeled (4t)), and finishes, so control returns to Eater.Eat 1200 Cals();
the return is indicated by the dotted arrow from Test Eater.Eat Donuts() to
Eater.Eat 1200 Cals(). That method next calls Eat Burgers() and this call is
again dispatched to Test Eater.Eat Burgers(), represented by the solid arrow
from Eater.Eat 1200 Cals() to Test Eater.Eat Burgers().

The process of saving initial information, delegating the call to the cor-
responding method in Eater, and then saving the results in the trace is re-

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 183



TESTING POLYMORPHIC BEHAVIOR

peated; these are represented respectively by the point labeled (5t), the solid
arrow from Test Eater.Eat Burgers() to Eater.Eat Burgers(), and the point
labeled (7t) (after Eater.Eat Burgers() performs its update –represented by
(6)– and returns –labeled by the dotted arrow from Eater.Eat Burgers() to
Test Eater.Eat Burgers()). At this point Test Eater.Eat Burgers() finishes,
so it returns –represented by the dotted arrow– to Eater.Eat 1200 Cals(). That
method is also done now so it returns to Test Eater.test Eat 1200 Cals(). The
final action, the one that we have been building up towards, is to check if the post-
condition specified in (4) (with the appropriate substitutions, i.e., tau for τ and
old Cals Eaten for Cals Eaten@pre) is satisfied. This is represented by the point
labeled with the diamond with a double question mark in it.

The key point is that by defining Test Eater as a derived class of Eater, the
class under test, we are able to exploit polymorphism to intercept the calls to (and
returns from) the hook methods. This allows us to record information about these
calls (and returns) without having to make any changes to the methods being tested.
This allows us to achieve our goal of black-box testing of the polymorphic behavior
of the template method of Eater.

It is worth noting that Test Eater.Eat Donuts() is not the test method corre-
sponding to Eater.Eat Donuts(). That test method will be essentially like the one
defined in Fig. 3 with some minor changes: Both occurrences of t Eater.Cals Eaten

should be replaced by Cals Eaten since there is no separate t Eater object
now. More important, the call t Eater.Eat Donuts() should be replaced by
base.Eat Donuts() this being the method under test here.

If there is more than one template method, we could introduce more than one
trace variable; this is in fact not necessary since only one template test method
will be executing at a time, and it starts by initializing tau to ε. Of course we
have assumed that we can declare tau to be of type “trace”. If we really wanted to
record all the information that tau has to contain in order to ensure completeness of
the reasoning system [16], things would be more complex. We can simplify matters
considerably by only recording the identities of the hook methods called and the
parameter values and results returned. This is a topic for further work.

Let us now consider the derived class Eater Jogger. How do we construct
the test class Test Eater Jogger? It should not be a derived class of Test Eater

because then the redefinitions of the hook methods in Eater Jogger would not be
used by the test methods in Test Eater Jogger. In general, in fact, test classes
should be sealed in C#-terminology or final in Java-terminology. A given test class
Test C is only intended to test that the methods of the corresponding class C meet
their specs. A different class D, even if D is a derived class of C, would have to
have its own test class defined for it. Of course, Test Eater Jogger would be quite
similar to Test Eater. The only differences would be that its base class would be
Eater Jogger not Eater, and the pre- and post-conditions would be the ones from
the specifications of the Eater Jogger class. This suggests that much of the work
of defining test classes can be mechanized. We will return to this point in the final

184 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



5 RELATED WORK

section.

Before concluding this section, we should note one other point. An important
requirement that derived classes should satisfy is that of behavioral subtyping [9].
Behavioral subtyping requires that any redefinitions of hook methods in the derived
class must continue to satisfy their base class specifications. If this were not the
case, the reasoning that we have performed in the base class about the behavior of
the template method, including the trace-based specification of that method, may
no longer be valid. For example, suppose a template method t() first calls the hook
method h1(); if the value returned by h1() is positive, t() then calls h2(), else it calls
h3(). Suppose also that the base class specification of h1() asserts that it will return
a positive value. When reasoning about the base class, we might then establish,
on the basis of this specification of h1(), a specification for t() which asserts that
the identity of the first hook method that t() calls (as recorded in the first element
of the trace τ of t()) is h1(), and the identity of the second method called is h2().
Suppose now we redefine h1() in the derived class so that it returns a negative value.
Then, in the derived class, t() will not satisfy its specification, and the problem is
not with t() but with the way that h1() was redefined. The redefined h1() does not
satisfy its base class specification, i.e., it violates behavioral subtyping. Hence, when
testing the behavior of the hook methods in the derived class, we should test not just
against the derived class specification of the methods, but also against their base
class specifications. Alternately, the behavioral requirements specified in the base
class for a hook method should be included as part of its derived class specification
as is done, for example, in the Eiffel reasoning system [10].

5 RELATED WORK

Perry and Kaiser [14] and Smith and Robson [15] were the among earliest to identify
the problems involved in testing of OO systems. In particular, they pointed out
the difficulties caused by inheritance: While inheritance allows the derived class
designer to inherit from the base class, this code may not work in cooperation
with the methods (re-)defined in the derived class; suitable tests appropriate to the
derived class will have to be designed to check that this is indeed so. Harrold et al.
[7] propose an algorithm that identifies which tests of the base class are applicable
to the derived class. Their point is that if m() is a method of the base class and
it is neither redefined in the derived class, nor does it invoke (directly or via other
methods) any methods that are redefined in the derived class, then any test designed
to validate m() as part of the base class, can continue to be used in the derived class.
Hsia et al.’s [8] work is similar but deals not just with base and derived classes but
also clients of classes; they use the notion of class firewall [19] to identify the parts
of a system that are affected by a change in a given class.

None of these authors deal with specification-based testing. They are more
concerned with identifying suitable test cases based on the internal structure of the
classes. Doong and Frankl [3] present a specification based approach to testing

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 185



TESTING POLYMORPHIC BEHAVIOR

OO programs. One important difference with our work is that whereas we use
concrete specifications, Doong and Frankl use abstract (algebraic) specifications.
They require the user to supply an equivalence testing algorithm that can be used
to test if two states are, from an abstract point of view, equivalent. We do not need
such an algorithm since we can simply check whether a given concrete state satisfies
a given pre- or post-condition, rather than having to compare it with an abstract
state that satisfies the abstract specification.

More important, neither Doong and Frankl, nor the other authors, address the
question of testing the polymorphic behavior of template methods. Indeed, as far
as we know, our work is the first one to explicitly deal with this question.

6 DISCUSSION

Much of the power of the object-oriented approach derives from the mechanism of
polymorphism. It allows a derived class designer to enrich the behavior of a template
method by simply redefining some of the hook methods it invokes. Therefore, it is
essential when testing the behavior of OO classes, not just to test their functional
behavior but also the polymorphic behavior, reflected in the patterns of calls that the
template methods of the class make to the hook methods. This has been the main
motivation behind our work. As we noted, testing this behavior, while remaining
within the confines of black-box testing is challenging since the behavior in question
is, in a sense, transient. It manifests only during the execution of the template
method and, by its very definition, black-box testing forbids ‘peeking-inside’ the
method to observe it as it executes.

As we saw, polymorphism itself provided the solution. By defining the test
class as a derived class of the class C under test and by redefining, in the test
class, the hook methods of C so that they record appropriate information about
the state of the test object as well as the call before delegating the call to the
corresponding methods in C and similarly recording information once that delegated
call finishes and returns, we were able to get the necessary information to test
whether the template method’s pattern of calls to the hook methods does indeed
meet the expectations expressed by its specification for its polymorphic behavior.
This means that we do not need any access to the source code of C; indeed, we
may not even have that source code. This is important since if C was purchased
from a software vendor, the vendor is unlikely to have supplied, given proprietary
consideration, its source code.

We will conclude with a couple of pointers to future work. Consider again the case
of a class whose source code we do not have. An important recent development [6]
in the C#/.NET platform is the use of meta-data to capture important information
about a class without the need for access to the source code. Meyer [11] mentions a
contract wizard that exploits this information to allow us to add class invariants and
pre- and post-conditions to existing classes. But the types of assertions considered

186 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



6 DISCUSSION

here are in terms of just the member variables of the class in question. As we saw,
to capture polymorphic behavior, we also need to be able to use traces. Indeed,
polymorphic behavior is often documented informally, along the lines of “template
method t() will, during its execution, invoke hook method h1() and h2() in that
order if during its earlier call to h3(), it received a particular response, else it will
call only h2()”. Since developers will often enrich the behaviors of such methods
by defining derived classes in which methods such as h3() are redefined. Hence it is
important to formalize such documentations, and it would be interesting to extend
the contract wizard to accommodate specifications involving traces. Once that is
done, the next step would be to mechanize, as far as possible, the generation of
test classes that can use such specifications. This would be particularly useful in
building systems using OO application frameworks [4] since, as we noted in Section
1, these frameworks typically make extensive use of template methods and usually
come with informal documentation of the type we just described.

REFERENCES

[1] B. Beizer. Black-box testing. John-Wiley, 1995.

[2] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 1985.

[3] R. Doong and P. Frankl. The ASTOOT approach to testing object-
oriented programs. ACM Trans. on Software Eng. and Methodology,
3:101–130, 1994.

[4] M. Fayad, D. Schmidt, and R. Johnson. Building application frameworks.
Wiley, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable OO Software. Addison-Wesley, 1995.

[6] E. Gunnerson. A programmer’s introduction to C#. Apress, 2001.

[7] M. Harrold, J. McGregor, and K. Fitzpatrick. Incremental testing of OO
class structures. In 14th ICSE, pages 68–80, 1992.

[8] P Hsia, X Li, DC Kung, CT Hsu, L Li, Y Toyoshima, and C Chen. A
technique for the selective revalidation of OO software. Software Main-
tainence: Research and Practice, 9:217–233, 1997.

[9] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans.
on Prog. Lang. and Systems, 16:1811–1841, 1994.

[10] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[11] B Meyer. .NET is coming. IEEE Computer, 34(8):92–97, 2001.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 187



TESTING POLYMORPHIC BEHAVIOR

[12] G. Myers. The Art of Software Testing. John Wiley, 1979.

[13] S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-
grams. Acta Informatica, 6(1):319–340, 1976.

[14] D. Perry and G. Kaiser. Adequate testing and OO programming. Journal
of Object Oriented Programming, 2:13–19, 1990.

[15] M. Smith and D. Robson. OO programming – the problems of validation.
In Int. Conf. on Software Maintainence, pages 272–281, 1990.

[16] N. Soundarajan and S. Fridella. Framework-based applications: From
incremental development to incremental reasoning. In W. Frakes, edi-
tor, Proc. of Sixth Int. Conf. on Software Reuse: Advances in Software
Reusability, LNCS 1844, pages 100–116. Springer, 2000.

[17] N. Soundarajan and B. Tyler. Specification-based incremental testing of
object-oriented systems. In Q. Li, D. Firesmith, R. Riehle, G. Pour, and
B. Meyer, editors, Technology of Object Oriented Languages and Systems
39, pages 35–44. IEEE Computer Society Press, 2001.

[18] J. Warmer and A. Kleppe. The Object Constraint Langauge. Addison-
Wesley, 1999.

[19] L. White and H. Leung. A firewall concept for both control-flow and
data-flow in regression and regression integration testing. In Int. Conf.
on Software Maintainence, pages 262–271, 1992.

ABOUT THE AUTHORS

Neelam Soundarajan is an Associate Professor in the Computer and Information
Science Dept. at the Ohio State University. His primary interests are in Software
Engineering, specifically in reasoning about program behavior.

Benjamin Tyler is a graduate student in the Computer and Information Science
Dept. at the Ohio State University. Ben is interested in various aspects of Software
Engineering; his Ph.D. work deals with developing techniques and tools for testing
OO programs.

188 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3


