

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Cite this article as follows: Richard Wiener: Educator’s Corner: An OO Application that introduces
Heuristic Algorithm Design, in Journal of Object Technology, Vol. 1, No. 2, July-August 2002,
pages 63-78. http://www.jot.fm/issues/issue_2002_07/column6

Educator’s Corner: An OO Application
that introduces Heuristic Algorithm
Design

Dr. Richard Wiener, University of Colorado, Colorado Springs, U.S.A.

I shall wear the hat of columnist from time-to-time. This series of columns is aimed at
fellow educators both within and outside the University. Although the subject area
addressed by the column may not be directly involved with object technology, an object-
oriented approach to problem solving will be featured.
This first column demonstrates how one might wish to introduce the subject of heuristics
in teaching algorithm design. To stimulate student interest in this subject, I have chosen
a problem familiar to most students – the game of MasterMind™ (registered trademark
of Pressman Toy Company). Master Mind was invented in 1970-71 by Mordecai
Meirowitz, an Israeli Postmaster. Over 55 million games have been sold worldwide
since its release in 1972.
The challenge is to design an algorithm that forms the basis of an application program
that allows the computer to guess the human user’s secret code with the fewest number
of guesses. In this case the application program shall be constructed using Java 1.3.1
running on an Apple Macintosh under OS X. Since this is a new platform for me (most
of my work has been done on a Windows 2000 platform) I shall comment, whenever
appropriate, on the tools available under this platform.

1 A REVIEW OF MASTER-MIND

The user must first construct a secret code consisting of a sequence of four colors chosen
from red, blue, yellow, green, white and orange. In our context, the application program
(using the heuristic algorithm) must “guess” the user’s code through a series of steps. At
each step, the program produces a 4-tuple of colors. The user must then input a score
associated with the program’s 4-tuple. The scoring is performed as follows: for each
color in the 4-tuple the program produces that is identical in color and position to the
user’s secret code, the user uses a red peg to score that hit. For each color the program
produces that is the same as one of the user’s colors but is not in the correct position, the
user uses a white peg to score that hit. Once the user completes the scoring of the
program’s 4-tuple, the program produces a new 4-tuple which the user then scores. This
process continues until the program produces a 4-tuple that exactly matches the user’s

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_07/column6

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

secret code in both colors and positions. In this final case, the user uses 4 red pegs to
indicate that the application program has succeeded in “guessing” the secret code.

“Guessing” the user’s secret code when playing the actual game by hand is non-
trivial, since there are 1296 possible 4-tuples that can form the basis for the secret code.
In 1993, Kenji Koyama and Tony W. Lai calculated that the best strategy uses an average
of 4.340 moves.

2 THE HEURISTIC ALGORITHM

The heuristic algorithm that shall be used in the application program appears on the
website of Radu Rosu (http://www.unc.edu/~radu/mm/MMS.html).

After an arbitrary initial guess, the algorithm produces a random series of 4-tuples
until the first is found that is consistent with all the user’s previous scores. So instead of
utilizing deep analysis and mathematics, the algorithm uses total randomness. The
simplicity of the algorithm makes it appealing. In addition, we shall see that this simple
algorithm requires an average number of guesses close to 4.6, not too far away from the
optimum strategy that requires an average of 4.340 guesses.

The Development Platform, relevant tools and porting Java software

As indicated earlier, the Java application that implements and demonstrates this heuristic
approach to playing MasterMind™ was developed on an Apple Macintosh under OS X.
JBuilder 6 Enterprise Version was used as the main development tool both for project
management and to assist in the production of the GUI. As is known from my review of
JBuilder 6 that appeared in the previous issue of JOT (co-authored with Dave
Neuendorf), I believe that this Java development tool is of superb quality. It works
exactly the same under OS X as under Windows.

To port an earlier version of this application from my PC to the Macintosh, I utilized
an important tool, Dave 3.1.1 manufactured by Thursby Software Systems –
www.thursby.com. This tool provides complete connectivity between the Apple
Macintosh (the new kid on my block) and my existing PC local area network. Without
this tool the value of the Macintosh would be significantly reduced.

Any claim that Java software runs “as-is” on all platforms is not true. After porting
the Window’s version to the Macintosh, it was quickly evident that many of the labels
above and on buttons did not fit properly. The default fonts used on each platform are
different. Fortunately, this is the only area that required fine tuning.

http://www.unc.edu/~radu/mm/MMS.html
http://www.thursby.com

The Application

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 65

3 THE APPLICATION

The application is modeled using 5 classes:

• MasterMindApplication: The usual “main driver” found in many GUI
applications.

• MasterMindPanel: An extension of the standard JPanel component. This class is
used to hold the game image and supports the graphical images of pegs for
scoring and playing.

• Row: This class forms the model of a 4-tuple of color objects. Random row
objects can
be created and their scores computed.

• MasterMindUI: The usual user interface class that contains a MasterMindPanel
object as well as the game control buttons and output messages.

• Global: Contains and supports a globally accessible random number object.
Listing 1 contains the details of class Row.
Listing 1 – Class Row

import java.util.*;
import java.awt.*;

// Models a row in Mastermind
public class Row {

 // Fields

 private Color [] elements = new Color[4];
 private int exactMatches, colorMatches;
 private final Color [] colors =
 {Color.red, Color.blue, Color.yellow,
 Color.white, Color.green, Color.orange};

 // Constructors
 public Row (Color p1, Color p2, Color p3, Color p4) {
 elements[0] = p1;
 elements[1] = p2;
 elements[2] = p3;
 elements[3] = p4;
 // Helps create a statistically sound random sequence
 for (int i = 0; i < 20000; i++) {
 Global.rnd.nextDouble();
 }
 }

 public Row () {}

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

 // Commands

 /** Sets values of fields exactMatches and colorMatches */
 public void computeScore (Row anotherRow) {
 this.resetScore();

 // Create two local arrays
 Color [] receiver = new Color[4];
 Color [] parameter = new Color[4];
 for (int index = 0; index < 4; index++) {
 receiver[index] = elements[index];
 parameter[index] = anotherRow.elements[index];
 }

 // Find matchups
 for (int index = 0; index < 4; index++) {
 if (receiver[index] == parameter[index]) {
 exactMatches++;
 // Remove match from receiver and parameter
 receiver[index] = null;
 parameter[index] = null;
 }
 }

 // Find the same color with no matchup
 for (int index = 0; index < 4; index++) {
 if (receiver[index] != null) {
 // Is receiver[index] in parameter array
 boolean found = false;
 for (int i = 0; !found && i < 4; i++) {
 if (receiver[index] == parameter[i]) {
 parameter[i] = null;
 colorMatches++;
 found = true;
 }
 }
 }
 }
 }

 public void generateRandomRow () {
 for (int index = 0; index < 4; index++) {
 int color = Global.rnd.nextInt(6);
 elements[index] = colors[color];
 }
 }

 public void setMatches (int matches) {
 exactMatches = matches;
 }

The Application

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 67

 public void setSameColor (int sameColor) {
 colorMatches = sameColor;
 }

 // Queries
 public int matches () {
 return exactMatches;
 }

 public int sameColor () {
 return colorMatches;
 }

 public boolean sameScore (Row other) {
 return exactMatches == other.exactMatches &&
 colorMatches == other.colorMatches;
 }

 public Color p1 () {
 return elements[0];
 }

 public Color p2 () {
 return elements[1];
 }

 public Color p3 () {
 return elements[2];
 }

 public Color p4 () {
 return elements[3];
 }

 public String toString () {
 return p1().toString() + p2().toString() + p3().toString() +
 p4().toString();
 }

 private void resetScore () {
 exactMatches = 0;
 colorMatches = 0;
 }
}

Listing 2 presents some of the details of class MasterMindPanel.
Listing 2 – Class MasterMindPanel

import java.awt.*;

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public class MasterMindPanel extends JPanel {

 // Fields

 // Image of Master Mind Game - Digital photo of game
 private Image masterMindGameImage;

 // Coordinates of peg holes
 private Point [] peg = {new Point(0, 0),
 new Point(74, 512),
 // … details omitted
 new Point(178, 157),
 new Point(222, 160)};

 // Coordinates of pin holes for scoring
 private Point [] pin = {new Point(0, 0),
 new Point(238, 529),
 new Point(258, 532),
 // … details omitted
 new Point(259, 156),
 new Point(278, 159)};

 // Used by paintComponent for rendering peg or pin
 private Color [] pinSelected = new Color[33];
 private Color [] pegSelected = new Color[33];

 private int pegIndex;
 private int pinIndex;

 // Constructor
 public MasterMindPanel () {
 masterMindGameImage =
 Toolkit.getDefaultToolkit().getImage("MasterMind.gif");
 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(masterMindGameImage, 0);
 try {
 tracker.waitForID(0);
 } catch (InterruptedException ex) {
 System.out.println(ex);
 }
 }

 public void paintComponent (Graphics g) {
 super.paintComponent(g);
 g.drawImage(masterMindGameImage, 0, 0, this);
 int diameter = 23;

The Application

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 69

 for (int j = 1; j <= 32; j++) {
 if (pegSelected[j] != null) {
 g.drawArc(peg[j].x, peg[j].y, diameter, diameter, 0,
 360);
 Color pegColor = pegSelected[j];
 g.setColor(pegColor);
 g.fillArc(peg[j].x, peg[j].y, diameter, diameter, 0,
 360);
 }
 }
 diameter = 11;
 for (int j = 1; j <= 32; j++) {
 if (pinSelected[j] != null) {
 g.drawArc(pin[j].x, pin[j].y, diameter, diameter, 0,
 360);
 Color pinColor = pinSelected[j];
 g.setColor(pinColor);
 g.fillArc(pin[j].x, pin[j].y, diameter, diameter, 0,
 360);
 }
 }
 }

 public void drawPeg (Color color, int row, int col) {
 pegIndex = (row - 1) * 4 + col;
 }

 public void drawPin(Color color, int row, int col) {
 pinIndex = (row - 1) * 2 + col;
 }

 public void setPinColor(Color color, int index) {
 pinSelected[index] = color;
 }

 public void setPegColor(Color color, int row, int col) {
 pegSelected[(row - 1) * 4 + col] = color;
 }

 public boolean pinColor (int index) {
 return pinSelected[index] != null;
 }

 public Color [] pinsSelected () {
 return pinSelected;
 }
}

The constructor handles the task of downloading the image from a .gif file. This .gif file
was produced by taking a digital photo of the real game. The points defined in the peg

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

and pin arrays were obtained tediously by hand since the digital image was off-center.
The paintComponent method is automatically activated whenever the GUI requires
refreshing such as in response to a resize event or re-validate event. As is typical in Java,
graphics-based messages are transmitted through a Graphics object .

Listing 3 presents some of the details of class MasterMindUI. All the event handlers are
present in this class including the logic for the decision about which pin hole the user has
selected using either a left or right mouse click.
Listing 3 – Class MasterMindUI

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

public class MasterMindUI extends JFrame {

 // Fields
 private Row [] board = new Row[10]; // Holds the game board
 private int rowNumber = 0;
 private Row code = new Row();
 private Row newRow;
 private MasterMindPanel imagePanel;
 private Color [] userCode = new Color[4]; // For scoring
 // verification

 // Coordinates of scoring pegs
 private Point [] scoringPeg =
 {new Point(0, 0), new Point(248, 557), new Point(266, 557),
 // … Details omitted
 new Point(284, 204), new Point(265, 182), new Point(284,185)};

 // Assorted graphical component objects, not shown

 // Constructor and initialization method not shown

 private void this_mouseClicked (MouseEvent e) {
 int error = 3;
 for (int i = 1; i <= 32; i++) {
 if ((e.getX() >= scoringPeg[i].x - error &&
 e.getX() <= scoringPeg[i].x + error) &&
 e.getY() >= scoringPeg[i].y - error &&
 e.getY() <= scoringPeg[i].y + error) {
 int row = (i - 1) / 2 + 1;
 int col = i % 2 == 1 ? 1 : 2;
 Color pinColor;
 if (imagePanel.pinColor(i)) {
 pinColor = null;

The Application

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 71

 } else {
 pinColor =
 SwingUtilities.isLeftMouseButton(e) ? Color.
 red : Color.white;
 }
 imagePanel.drawPin(pinColor, row, col);
 imagePanel.repaint();
 imagePanel.setPinColor(pinColor, i);
 }
 }
 }

 private void newGame () {
 // Advance the random number generator
 for (int i = 0; i < 50000; i++) {
 Global.rnd.nextDouble();
 }

 rowNumber = 0;

 // Clear all pegs and pins
 for (int j = 1; j <= 32; j++) {
 imagePanel.setPinColor(null, j);
 }
 for (int r = 1; r <= 8; r++) {
 for (int c = 1; c <= 4; c++) {
 imagePanel.setPegColor(null, r, c);
 }
 }
 imagePanel.repaint();
 imagePanel.setPegColor(Color.red, 1, 1);
 imagePanel.setPegColor(Color.red, 1, 2);
 imagePanel.setPegColor(Color.blue, 1, 3);
 imagePanel.setPegColor(Color.blue, 1, 4);
 imagePanel.repaint();
 // Choose from among 6 random starting configurations
 int choice = Global.rnd.nextInt(6) + 1;
 // Details not shown

 board[0] = newRow;
 }

 private void enterScore () {
 // Get range of pinsSelected to query
 int row = rowNumber + 1;
 int endIndex = row * 4;
 int startIndex = endIndex - 3;
 int matches = 0;
 int same = 0;
 Color [] pinsSelected = imagePanel.pinsSelected();
 for (int i = startIndex; i <= endIndex; i++) {
 if (pinsSelected[i] == Color.red) {

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

 matches++;
 } else if (pinsSelected[i] == Color.white) {
 same++;
 }
 }
 // Verify that user has entered correct score
 newRow.computeScore(new Row(userCode[0], userCode[1],
 userCode[2], userCode[3]));
 if (matches != newRow.matches() ||
 same != newRow.sameColor()) {
 JOptionPane.showMessageDialog(this,
 "Incorrect score entered.");
 return;
 }
 if (newRow == null) {
 return;
 }
 newRow.setMatches(matches);
 newRow.setSameColor(same);
 board[rowNumber] = newRow;
 if (matches == 4) {
 JOptionPane.showMessageDialog(this,
 "It took the computer " + (rowNumber + 1)
+
 " guesses.");
 codeField1.setText("");
 codeField2.setText("");
 codeField3.setText("");
 codeField4.setText("");
 return;
 }

 /* Generate a random row that satisfies all the previous board
 scores entered by the user.
 */
 int counter = 0;
 boolean allRowsMatchScore = true;
 do {
 counter++;
 newRow = new Row();
 newRow.generateRandomRow();
 allRowsMatchScore = true;
 for (int r = 0; allRowsMatchScore &&
 r <= rowNumber; r++) {
 /* Value of internal fields exactMatches and
 colorMatches set for newRow object based on board[r]
 */
 newRow.computeScore(board[r]);
 /* Returns true if existing scores for board[r] are the
 same as those just computed for newRow based on
 board[r].
 */
 allRowsMatchScore = board[r].sameScore(newRow);

The Application

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 73

 }
 } while (!allRowsMatchScore && counter <= 50000 &&
 rowNumber <= 7);
 if (rowNumber >= 8 || counter >= 50000) {
 JOptionPane.showMessageDialog(this,
 "You have an illegal entry. Game will be stopped.");
 newGame();
 return;
 }
 rowNumber++;
 Color color1 = newRow.p1();
 Color color2 = newRow.p2();
 Color color3 = newRow.p3();
 Color color4 = newRow.p4();
 row++;
 imagePanel.setPegColor(color1, row, 1);
 imagePanel.setPegColor(color2, row, 2);
 imagePanel.setPegColor(color3, row, 3);
 imagePanel.setPegColor(color4, row, 4);
 imagePanel.repaint();
 }

 // Several event handler methods not shown

}

The this_mouseClicked event handler method considers the user to have hit a scoring hole
if the mouse click is within plus or minus 3 pixels of the center.

The heuristic algorithm that is at the heart of the application is shown in the private
enterScore method. The pertinent code is shown in boldface.

Listing 4 shows the details of class Global that makes a random number object globally
accessible.
Listing 4 – Class Global

import java.util.*;

public class Global {
 public static Random rnd = new Random();
}

4 RUNNING THE APPLICATION ON A MACINTOSH

The OS X environment on the Macintosh makes it easy to create “clickable” applications.
A tool called MRJAppBuilder may be used to create a native Macintosh application. Its

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

wizard walks the user through the appropriate steps. Another approach, and one that I
prefer, is to create an application .jar file that is clickable. To make the .jar file clickable,
one needs to create a manifest.txt file and use it while constructing the .jar file for the
application.
The manifest.txt file needed to make the application clickable contains the one line,

Main-Class: MasterMindApplication
From an OS X shell opened to the sub-directory containing the application files (the
ability for a Macintosh programmer to have access to a standard command shell is a
relatively new event in the history of Apple Computers – one that is long overdue and
greatly appreciated), the application is compiled using the usual

javac *.java command
Next the clickable .jar file is produced from the command:

jar –cvfm MasterMind.jar manifest.txt *.class
The MasterMind.jar file can then be renamed simply MasterMind and double clicked to
launch it.
A screen shot of the application while running is:

Running the Application on a Macintosh

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 75

5 SOME STATISTICS ON THE HEURISTIC ALGORITHM

It is interesting to examine the efficiency and relative performance of this heuristic
algorithm by producing statistics that output:

1. The average number of random 4-tuples required as a function of board position
before one is accepted.

2. The average number of “guesses” that the algorithm requires.

To accomplish this we generate all possible 64 = 1296 4-tuples as secret codes and for
each determine the number of guesses required for each board position and the total
number of rows required (guesses required) before a solution is reached. We output the
average results over the 1296 games that are simulated.

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

Listing 5 presents the details of class MasterMindStats.

Listing 5 – Class MasterMindStats

import java.util.*;
import java.text.*;

import java.awt.*;

/**
 * Determine the average number of guesses and the average number
 * of 4-tuples that need to be generated as a function of row number.
 */
public class MasterMindStats {

 // Fields
 private Row [] board = new Row[10]; // Holds the game board
 private int rowNumber = 0;
 private Row code;
 public static Random rnd = new Random();
 private int totalNumberGuesses = 0;
 private int [] numberGenerated = new int[10]; // Number of 4-tuples
 private Color [] colors = { Color.red, Color.blue, Color.yellow,
 Color.white, Color.green, Color.orange
 };

 public static void main (String[] args) {
 MasterMindStats app = new MasterMindStats();
 DecimalFormat df = new DecimalFormat("0.###");

 TimeInterval t = new TimeInterval();
 t.startTiming();
 // Generate all possible secret codes
 for (int color1 = 0; color1 < 6; color1++) {
 for (int color2 = 0; color2 < 6; color2++) {
 for (int color3 = 0; color3 < 6; color3++) {
 for (int color4 = 0; color4 < 6; color4++) {
 app.code = new Row(app.colors[color1],
 app.colors[color2],
 app.colors[color3],
 app.colors[color4]);

 // Always use the same initial 4-tuple
 Row newRow = new Row(Color.red, Color.red,
 Color.blue, Color.blue);

 app.rowNumber = 0;
 app.board[app.rowNumber] = newRow;
 newRow.computeScore(app.code);

 /* Generate a random row that satisfies all the
 previous board scores.

Some statistics on the heuristic algorithm

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 77

 */
 while (newRow.matches() != 4) {
 boolean allRowsMatchScore = true;
 int numberGenerated = 0;

 do {
 newRow = new Row();
 newRow.generateRandomRow();
 allRowsMatchScore = true;
 for (int r = 0; allRowsMatchScore &&
 r <= app.rowNumber; r++) {
 newRow.computeScore(app.board[r]);
 allRowsMatchScore =
 app.board[r].sameScore(newRow);
 }
 numberGenerated++;
 } while (!allRowsMatchScore);
 app.rowNumber++;
 app.board[app.rowNumber] = newRow;
 newRow.computeScore(app.code);
 app.numberGenerated[app.rowNumber] +=
 numberGenerated;
 }
 app.totalNumberGuesses += app.rowNumber + 1;
 }
 }
 }
 }
 t.endTiming();
 System.out.println();
 System.out.println("Elapsed time: " + t.elapsedTime() +
 " seconds.");
 System.out.println();
 System.out.println("Average number of guesses: "
 + df.format(app.totalNumberGuesses /
 1296.0));
 for (int i = 1; i <= 8; i++) {
 System.out.println("Average Number 4-tuples Generated[" +
 i + "] = " +
 df.format(app.numberGenerated[i] /
 1296.0));
 }
 System.out.println();
 }
}

Listing 6 shows the support class TimeInterval.
Listing 6 – Class TimeInterval

/**
 * A timing utility class useful for timing code segments
*/

 AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

public class TimeInterval {

 private long startTime, endTime;
 private long elapsedTime; // Time interval in milliseconds

 // Commands
 public void startTiming() {
 elapsedTime = 0;
 startTime = System.currentTimeMillis();
 }

 public void endTiming() {
 endTime = System.currentTimeMillis();
 elapsedTime = endTime - startTime;
 }

 // Queries
 public double elapsedTime() {
 return (double) elapsedTime / 1000.0;
 }
}

The output for a typical run is:
Elapsed time: 12.858 seconds.
Average number of guesses: 4.639
Average Number 4-tuples Generated[1] = 11.434
Average Number 4-tuples Generated[2] = 87.522
Average Number 4-tuples Generated[3] = 430.57
Average Number 4-tuples Generated[4] = 530.5
Average Number 4-tuples Generated[5] = 158.288
Average Number 4-tuples Generated[6] = 12.807
Average Number 4-tuples Generated[7] = 0
Average Number 4-tuples Generated[8] = 0

Complete Java sources are available for download at
http://www.jot.fm/issues/issue_2002_07/column6/Mastermind.zip

http://www.jot.fm/issues/issue_2002_07/column6/Mastermind.zip

Some statistics on the heuristic algorithm

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 79

About the author

Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant
and software contractor whenever the possibility arises.

