
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Thread specific singletons:
Handling singleton pattern errors in multi-
threaded applications and their variations

Yagna Pant Yagna.Pant@motorola.com
Kazuhiro Ondo Kazuhiro.Ondo@motorola.com
Motorola, Arlington Heights, IL, USA.

The use of the design patterns has been popularized with the publication of the Design
Patterns book by Gamma et al. (1995). In this paper we discuss the implementation
of the singleton design patterns from “error recovery” perspectives for multi-threaded
applications where dynamic memory is allocated on a task by task basis. The de-
scription of the singleton pattern is straight forward but its implementation issues
are complicated [Alexandrescu, 2001]. We highlight a few problems of traditional
implementation for multi-threaded applications and propose several alternatives that
could potentially be used in different contexts depending on the problem at hand.
Because of the popularity of the C++programming languages in the industry, we also
present sample implementation details in C++.

1 THE SINGLETON PATTERN

In real world applications there are many situations where there can be one and only
one instance of a class. Typical examples may include a class for logging events to a
serial output device, a class for authenticating and verifying passwords entered in a
website, etc. The purpose of the singleton pattern, in the context of object-oriented
programming, is to provide a generic mechanism such that the class is instantiated
only once. Normally the first invocation of the class creates the unique instance
of the class and subsequent invocations would simply return a reference1 to the
instance created earlier. Figure 1 represents the Object Model Diagram (OMD)
(after Gamma et al., 1995) of singletons implemented in the traditional2 way (e.g.
Figure 2).

As shown in the code fragment (Figure 2), the mechanism for implementing the

1The term reference in this context is used generically unless stated otherwise. But this may
be implemented as a pointer in C++.

2We distinguish between traditional implementation with the extensions presented in this paper.

Cite this article as follows: Yagna Pant, Kazuhiro Ondo: Thread speci�c singletons:

Handling singleton pattern errors in multi-threaded applications and their varia-

tions, in Journal of Object Technology, vol. 1, no. 2, July–August 2002, pages 155–169,
http://www.jot.fm/issues/issue 2002 07/article4

http://www.jot.fm/issues/issue_2002_07/article4

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

Singl * instance

getInstance():
singletonOperation()

Singl

<<Singleton>>

The static method
getInstance returns the
unique instance.

Singl

Figure 1: Object model diagram of the singleton pattern

class Singl {
public:

// method for accessing the one and only one instance
static Singl *getInstance();

// a set of operations on the singleton (not defined)
private:

// Don’t allow ourselves to be instantiated and
// copy constructed outside this class
Singl(){ }
Singl(const Singl &) { }
// variable to keep track of the instance
static Singl *instance;
};

Singl* Singl::instance = 0;

Singl* Singl::getInstance(){
if(0 == instance) {

instance = new Singl;
}
return instance;
}

int main()
{

Singl *singlPtr = Singl::getInstance();

// operations on singlPtr
return 0;
}

Figure 2: Typical implementation of the singleton pattern in C++

singleton pattern is quite straight forward in C++. A class specific static variable
instance is defined to control creation of more than one instances and the static

member function getInstance is used for accessing the one and only one instance
of the singleton class3

Initially the static class variable Singl::instance is initialized to 0 (by de-
fault) and when the static function Singl::getInstance is invoked (in the main

routine), an instance of the Singl class is newed in the heap and the instance

pointer is returned to the application. Normally constructors and copy construc-
tors of the singleton class are made private or protected such that an attempt to
instantiate the Singl (class on its own) is flagged as an error during compilation.

2 SINGLETON PROBLEMS

The code given in Figure 2 works well for a single threaded application. If there
are a number of tasks or threads accessing the singleton object/class (O/C) in an
application, the first task executing the singleton O/C allocates memory for the

3The main objective of the paper is to analyze some of the error scenarios in multi-threaded
applications. Thus to illustrate the concepts only, the implementation has been kept very simple
and intentionally ignores some of the consequences of the Singleton Pattern [Gamma et al., 1995]
such as refinements of operations and representation.

156 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

2 SINGLETON PROBLEMS

instance variable. Since subsequent singleton access within this task and other
tasks4 are read only , the above mechanism also works for a well-behaved multi-
tasking application.5 However the code given in Figure 2 can create problems if the
singleton pattern is in a layer which is common to a number of tasks as shown in
Figure 3.

Common Layer

singleton
instance

Task1 Task2 Task3

Memory for the singleton instance is kept
at the Common Layer.

Figure 3: A multi-tasking software layer where singletons are implemented in the
common layer

In Figure 3, there are three tasks which use the services of the underlying
lower (or common) layer. Let us assume that the common layer has a single
O/C implementing the singleton pattern as shown in Figure 2. The layering ap-
proach illustrated in Figure 3 is quite common in many applications (including
real-time/embedded systems) whereby the upper layers use the services provided
by the lower layers. In an object-oriented application, the lower layers could be a
generic framework or a set of reusable class libraries. Let us further assume that the
tasks Task1, Task2, and Task3 all use the singleton instance implemented in the
common layer. Let us now examine a few situations while the application is being
executed:

• Task1 starts executing first and attempts to get an instance of Singl from
the common layer. Since the instance pointer initially points to 0 memory
(Figure 2) and since no instance has been created, an instance of the Singl is
allocated in Task1’s heap and the pointer is stored in the class static attribute
instance.

• After the context switch, Task1 is suspended and Task2 becomes active. It now
needs an instance of the Singl class and invokes the method Singl::getInstance.
Since memory has already been allocated and it is not pointing to 0, it simply
returns the address stored in the Singl pointer instance.

4Here we are assuming that the memory allocated in the heap by one task is accessible to other
tasks as well and the dynamic memory is allocated per task basis. In other words each task has
its exclusive pool of dynamic memory. Furthermore it is assumed that the singletons are defined
in a common lower layer (such as a library).

5We have not examined the effect of multiple processors and parallel processing in this paper.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 157

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

In this paper our main focus is on a unique kind of application architecture.
In this architecture, an application can have many tasks or threads (light weight
processes). Tasks are identified by a unique set of numbers. When the application
is started, the application simply creates the main task or the “master task”. Rest
of the tasks are created by sending messages to the main task and specifying
the entry points, heap size, etc. As all tasks are started one at a time, the
double check guard mechanism [Schmidt, 1999] to handle the issue of thread safe
initialization (multiple threads executing on a parallel machine when creating the
unique instance) was not necessary for our application domain.

All of the tasks running on the board need to be registered and pre-configured
with an internal “master task”. The “master task” takes care of many details
such as starting the new task, allocating dynamic memory space for each tasks
and ending the task (either by sending a message explicitly or if the “master
task” detects an internal error via. some pre defined mechanisms. There is no
shared memory between tasks and communications among tasks is strictly via.
message routing using a message queue. Resource congestion/deadlocks (memory
management, etc.) are handled at a lower layer using semaphores and application
do not need to worry about them. A task can not start another tasks (this is the
responsibility of the “master task” and a task can have a number of instances
running on the same board. The application architecture has been designed such
that when a task is terminated, it won’t have any effects to the rest of the tasks
running on the board. More details are discussed in [Pant, 2001].

Figure 4: Description of the application architecture

• Similarly when Task3 starts to execute and needs to refer to the Singl class,
the same pointer instance is returned to the task.

So far so good. All the tasks are behaving properly and all tasks can access the
global static variable pointer instance. Now because of some problems, let us
assume that Task1 starts to misbehave and is terminated.6

When a task is terminated, the heap memory associated with that task would
no longer be valid and is likely to contain an invalid address.7 This would cause
the state of the singleton class to be altered. Since the memory for the singleton
instance comes from Task1’s address space, an attempt to access the singleton
class either by Task2 or Task3 is likely to cause a core dump or a bus error. This
may bring down the whole application.

6Errors in a task means memory problems (within that task), division by zero, or other internal
failures. Normally when a task within an application encounters a problem, the entire application
will be in an undefined state. However our application does not use any shared memory and there
is no other coupling between any two tasks. All tasks have their own heap, their own queues for
receiving messages and they communicate with each other by sending messages. Thus our aim is
to create tasks that are potentially isolated from each other.

7As discussed earlier, in our software architecture, each task has its associated memory heap
which is preallocated when the task is started. When the task is killed and restarted, the singleton
pointers for that task would be initialized at the beginning (discussed below).

158 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 POSSIBLE ENHANCEMENTS

There may be a number of situations where it may not cause any catastrophic
effects when the problems in one task propagate to the rest of the application.
However this behavior would not be normally tolerated in a mission-critical, multi-
tasking applications such as a wireless switch. In such systems it is desirable to
confine all problems to the task it self as far as possible such that the errant task
can be restarted again to resume the operation.

3 POSSIBLE ENHANCEMENTS

Figure 5 shows one possible strategy to fix the problem [Alexandrescu, 2001] of
the singleton pattern as discussed in the last section. The static pointer variable
instance of Figure 2 has been removed and is replaced by an instance singl of the
class Singl. Thus an instance of the Singl class would automatically be created
when the code object is executed/downloaded in the default data segment. The
getInstance method returns the address of the singl object. Since static vari-
ables are initialized only once, subsequent invocations of the getInstance method
would not create another instance of the Singl class.

class Singl {
public:

// method for accessing the one and only one instance
static Singl *getInstance();

// a set of operations on the singleton (not defined)
private:

// Don’t allow ourselves to be instantiated and
// copy constructed outside this class

Singl(){ }
Singl(const Singl &) { }
};

Singl* Singl::getInstance(){
static Singl singl;

return &singl;
}

int main()
{

Singl *singlPtr = Singl::getInstance();
Singl *singlPtr2 = Singl::getInstance();

// operations on singlPtr
return 0;
}

Figure 5: An alternative way of fixing the singleton problem using global memory

The above approach may work in an operating system environment which has
flat memory address space and global data segment can be accessed by all of the
tasks/threads. But this may create some problems in an operating system architec-
ture where by global data is not allowed and individual tasks have corresponding
heap and data segment exclusively for themselves. Furthermore, this approach may
also have performance related issues as illustrated in Figure 6. There are three
tasks and three possible message queues in Figure 6. If there is a single class, all
of the messages posted to all of the queues is routed via. this class and a filtering
mechanism needs to be implemented in the singleton class to route the messages
to different tasks appropriately. If the singleton class also implements a publish–
subscribe design pattern and if the message filtering is done per message type, this

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 159

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

list could potentially be huge and there may be issues with traversing the list.

MQ1

Publisher/
Singleton

App2/
Subscriber

MQ3MQ2

App1/
Subscriber

App3/
Subscriber

Figure 6: Performance problem of the global instance

Common Layer

singleton

Task1

instance

Task2

instance

Task3

instance

Memory for the singleton instance is kept
at the task specific heap, whereas the
code resides in the Common Layer.

Figure 7: A software architecture for fixing the singleton problems

Another alternative fix would be to create a task specific array of memory (at
the stack) and associate this memory with singleton instances as shown in Figure 7
where the code that implements the singleton pattern resides in the common layer,
whereas the memory for the singleton instance is allocated in each task’s address
space. There are three pointers (one per each task) pointing to the singleton class
and share the same logic for the access operation from the common layer. If the
task e.g. Task1 dies, then only the instance pointer associated with this task would
point to an invalid address, without affecting the other two tasks and the rest of
the application. Thus in summary the problems caused by any one task would be
localized and would not be propagated to the rest of the tasks/applications.

One of the possible implementation strategy for the singleton architecture of
Figure 7 is shown in Figure 8. As shown in Figure 8, the enum SinglEnum lists all
of the singletons across the application.8 Both the declaration and the definition of
the static variable instance have been removed from the Singl class. The main
entry point of each task defines an array big enough to hold pointers to the instances
of the singletons (for that task). Thus the singletons now use stack memory from
each tasks address space. This memory address is then associated with the current

8It should be worthwhile to mention that type enumerations could be a potential source of
maintenance problems as new singletons are created within the common framework.

160 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 POSSIBLE ENHANCEMENTS

extern void *staticBufferPtr;

typedef enum{
MY˙SINGLETON,
//... indices to other instances of singletons
MAX NUM OF SINGLETONS
} SinglEnum;

class Singl {
public:

// method for accessing the one and
// only one instance
static Singl *getInstance();
// a set of operations on the singleton
// (not defined)

private:
// Don’t allow ourselves to be instantiated
// outside this class
Singl(){ }
Singl(const Singl &) { }
};

Singl* Singl::getInstance(){
if(0 == (Singl*)staticBufferPtr[MY SINGLETON]){

staticBufferPtr[MY SINGLETON]=(void*) new Singl;
}
return (Singl*) staticBufferPtr[MY SINGLETON];
}

void *staticBufferPtr;

void Task1EntryPoint()
{

unsigned void *
staticBuffers[MAX NUM OF SINGLETONS];

staticBufferPtr = staticBuffers;

// add the task specific varaiable list here

Singl *singlPtr = Singl::getInstance();

// operations on singlPtr
}

void Task2EntryPoint()
{

unsigned void *
staticBuffers[MAX NUM OF SINGLETONS];
staticBufferPtr = staticBuffers;

// add the task specific varaiable list here

Singl *singlPtr = Singl::getInstance();

// operations on singlPtr
}

Figure 8: The memory for the static instance variable is allocated from the task’s
address space

task such that this memory is used (after context switch) when the singleton code is
executed.9 In summary, by using this approach, we are creating instance pointers
equal to the number of unique tasks accessing the singletons and associating them
with the tasks appropriately.

Another alternative implementation strategy would be to create a Manager class
that would be responsible for managing the singletons throughout the application.
The object model diagram for such an arrangement is shown in Figure 9. The class
ISingl is the interface class and all singletons throughout the application inherit
from this class. The class SinglMgr manages instances of the ISingl class pointers.
SinglMgr is a friend to Singl class such that it can access appropriate constructors
and destructors.

The code fragment shown in Figure 10 implements the OMD of Figure 9. As in
Figure 8, the code fragment defines an enum of singletons used in the application. It
then defines an interface class (ISingl) with a virtual destructor. The advantage of
adding the interface class ISingl is in the destruction of the singletons (discussed
later). The singleton Manager SinglMgr maintains a list of the singletons (pointer
to ISingl class). The memory for this list is defined at the main entry point on the
stack. The SinglMgr class has a getInstance method that takes the singleton index

9This feature is available in vxWorks and there should be similar mechanisms in other operating
systems as well.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 161

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

ISingl

<<Abstract>>

Singl

SinglMgr 1 n

Clients access different singleton
instances via. SinglMgr. SinglMgr
delegates responsibility to the
appropriate singleton instance.

ISingl

Singl

SinglMgr

Figure 9: OMD for an alternative extension

#include <iostream.h>
typedef enum {

MY SINGLETON,
//... indices to other instances
// of singletons
MAX NUM OF SINGLETONS
} SinglEnum;

class SinglMgr;

// define an interface class
class ISingl {

friend SinglMgr;
protected:

virtual ˜ISingl() { }
};

class SinglMgr{
public:

SinglMgr(ISingl **addr, int sz);
˜SinglMgr();
ISingl *getInstance(SinglEnum index) const
{ return sglPtr[index]; }

private:
ISingl **sglPtr;
int size;
};

class Singl: public ISingl {
friend SinglMgr;

public:
// a set of operations on the singleton
// (just an example)
void printHelloWorld() {

cout << ”Hello world” << endl;
}

private:
˜Singl() { }
// Don’t allow ourselves to be
// instantiated outside this class
// except friends
Singl(){ }
Singl(const Singl &) { }
};

SinglMgr::SinglMgr(ISingl **addr, int sz) {
size = sz;
sglPtr = addr;

sglPtr[MY SINGLETON] = new Singl;
//
}

SinglMgr::˜SinglMgr() {
for (int i = 0; i ¡ size; i++) {

delete sglPtr[i];
}
}

int main() {
ISingl *staticBuffers[MAX NUM OF SINGLETONS];
SinglMgr mySinglMgr

(staticBuffers, MAX NUM OF SINGLETONS);

// add this to the task var list (not shown)

Singl * singlPtr =
(Singl *)mySinglMgr.getInstance(MY SINGLETON);

singlPtr->printHelloWorld();
return 0;
}

Figure 10: Singletons are managed by a Manager class

from the enum and returns a ISingl pointer which can be casted to an appropriate
type (derived class).

As mentioned earlier all of the singletons (e.g. Singl) publicly inherit from the
ISingl class and define SinglMgr as a friend to ISingl. The destructor is virtual

162 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 POSSIBLE ENHANCEMENTS

(to ensure correct destruction) but protected (defined in the ISingl class) such
that the memory is freed appropriately when ISingl pointers are used (within the
SinglMgr object) to delete child singleton objects10 and to allow other classes to
derive from ISingl. As in the earlier examples, the constructors are in the private
section. Furthermore, this class does not have any methods to get the singleton
instance. The responsibility of getting an instance of all the singletons has been
delegated to the SinglMgr class.

The constructor of the SinglMgr class does a new to instantiate individual sin-
gletons. Thus the construction order (as well as destruction) of singletons can be
explicitly specified if necessary. The destructor iterates through the array to delete
singleton instances. Alternatively the destructor can be modified to specify the de-
pendency order in which singletons need to be destroyed (e.g. one singleton depends
on the other singleton) without impacting the rest of the application.

The main routine defines an array of ISingl pointers (in its stack) sufficient to
hold a pointer to all singletons. It then instantiates SinglMgr class11 and passes the
address of the array as the constructor parameter. The next line shows how to get
an instance instance of a singleton.

The constructor of the SinglMgr class initializes the singleton pointers by creat-
ing a new instance explicitly. Thus as long as the SinglMgr constructor is invoked
successfully, it can be guaranteed the existence of the singleton instances. Hence the
SinglMgr::getInstance method does not check whether the singleton instance

is pointing to a NULL (0) object. As a result this implementation approach may
be slightly faster than the earlier proposal, specially if singletons are accessed quite
frequently in an application. As an added advantage, the singletons would be auto-
matically deleted when the SinglMgr object goes out of scope.

The code fragment presented in Figure 10 may be suitable for some applica-
tion areas where the number of singletons are small and known before hand and
both the SinglMgr and ISingl are in the same package. If they are in different
packages (e.g. a ISingl and SinglMgr in a library and Singl in application code),
this implementation strategy introduces circular dependencies as SinglMgr needs
to have a knowledge of Singl. As the SinglMgr is responsible for managing all
of the singletons in an application, adding a new singleton requires modification of
this class. There is also a loss of type information of “application singletons” in the
getInstance method as the SinglMgr stores an array of ISingl object pointers.

One method of overcoming several problems of Figure 10 is illustrated in Fig-
ure 11 (OMD) and the corresponding C++code is in Figure 12. In this method the
library or the common layer defines the classes base singleton, id, singleton

10The destructor should not be made public as it allows clients to destroy singleton objects.
The destructors of Singl should be protected or private (if it is necessary to prevent other
classes to derive from Singl).

11SinglMgr is not a singleton and different tasks can create unique instances of the manager in
their main entry routines. As a result when one task is killed, it is not going to effect the rest of
the application/tasks.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 163

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

T
singleton

base_singleton id

singleton_manager

my_singleton

 <<Friend>>

1 1

 <<Friend>>

1*singleton

base_singleton id

singleton_manager

my_singleton

Figure 11: Template based singleton manager

and singleton manager. The class singleton is a template class (T being the
template parameter and inherits from base singleton. There is a static mem-
ber id inside the singleton class for each type of application specific singletons
(e.g. my singleton). In other words, given two application specific singleton classes
singl1 and singl2, both singleton<singl1>::id > and singleton<singl2>::id

exist and are two distinct objects with distinct values. The class singleton manager

holds an array of singletons. It has a member function template <class T>

static T& instance(T* = 0); The compiler generates the requested overloaded
instance functions when needed12 The class base singleton contains an id class
(one for each application specific singletons (e.g. my singleton) to determine whether
the singleton has already been instantiated.

12Since functions can’t be overloaded by return type in C++, the function takes
a dummy argument which is not used within the member function. Given the
two application specific singleton classes singl1 and singl2, the compiler gener-
ate the functions singl1& singleton manager::instance(singl1* = 0) and singl2&
singleton manager::instance(singl2* = 0) when needed.

164 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 POSSIBLE ENHANCEMENTS

#include <exception>
#include <vector>

class singleton manager;
class singleton error : public std::exception {
public:

virtual const char * what() const throw() {
return ”singleton error”;
}
};

class base singleton {
protected:

class id {
public:

id(void) : index(-1) {}
private:

int index;
friend class singleton manager;
};
base singleton(void) { }
virtual ˜base singleton(){ }
void reg singl(id& id arg);
void unreg singl(id& id arg);
friend class singleton manager;

private:
// copy-constructor and copy-assignment made
// private and not implemented, to prevent
// accidental usage
base singleton(const base singleton&);
base singleton& operator=(const base singleton&);
};

template <class T>
class singleton : public base singleton {
protected:

singleton(void) {
reg singl(id);
}
virtual ˜singleton() {

unreg singl(id);
}

private:
friend class singleton manager;
static id id ;

private:
singleton(const singleton&);
singleton& operator=(const singleton&);
};

class singleton manager{
public:

// This class doesnot have any public
// constructors as there is no need for
// for singleton manager objects
template <class T>
static T& instance(T* = 0);

private:
friend class base singleton;

static void reg singl(base singleton& singl arg,
base singleton::id& id arg);
static void unreg singl(base singleton& singl arg,

base singleton::id& id arg) {
singletons[id arg.index] = 0;
}

private:
static std::vector<base singleton*> singletons;

private:
singleton manager(const singleton manager&);
singleton manager& operator=

(const singleton manager&);
};

inline void base singleton::reg singl(id& id arg){
singleton manager::reg singl(*this, id arg);
}

inline void base singleton::unreg singl(id& id arg){
singleton manager::unreg singl(*this, id arg);
}

template <class T>
base singleton::id singleton<T>::id ;

void singleton manager::reg singl(
base singleton& singl arg, base singleton::id& id arg){

// this function should probably be made multi-
thread safe !!!

if(-1 == id arg.index) {
singletons.push back(&singl arg);
id arg.index = singletons.size() - 1;
return;
}
if(singletons[id arg.index]) {

// this singleton type is already registered
throw singleton error();
}
singletons[id arg.index] = &singl arg;
}

(to be continued on next page)

With this approach as the list of singleton objects (and their corresponding
pointers/aliases) are automatically maintained in a vector list, the code is easier
to maintain. This also removes circular dependency as the singletons are created
and added to the list automatically/dynamically within the application domain.
Furthermore, this solution removes the possibility of having a mismatch between
static cast and the list of enumerations (by application developers). The imple-
mentation uses Curiously Recurring Template Patterns [Coplien, 1995], which gives
the base class a way of knowing a derived class at compile time (type information
is not lost) without creating circular compile time dependencies. However on the

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 165

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

(continued from previous page)

template <class T>

T& singleton manager::instance(T*){
if(-1 == singleton<T>::id .index) {

// no singleton instance registered for this class
throw singleton error();
}
if(singletons[singleton<T>::id .index]) {

return dynamic cast<T&>
(*singletons[singleton<T>::id .index]);
}
// a singleton instance has been registered,
// but has been deleted
throw singleton error();
}

std::vector<base singleton*>
singleton manager::singletons;

// application level code

// my singleton1 is the interface for the
// application
class my singleton1 : public
singleton<my singleton1>
{
public:

my singleton1(void){ }

virtual void hello world(void) = 0;
};

// my singleton1 impl is the actual
implementation
class my singleton1 impl : public
my singleton1
{
public:

my singleton1 impl(void) { }

virtual void hello world(void);
};

void my singleton1 impl::hello world(void)
{
}

int main(int /*argc*/, char* /*argv*/[])
{

// scoped singleton
my singleton1 impl ms1;

// Please note:
// No identifier, which has to match the
// specific singleton type and
// to be maintained manually.
//
// No loss of type information
//
// The compiler handles it, at a very little
// runtime overhead during single
singleton manager::

instance<my singleton1>().hello world();

return 0;
}

Figure 12: Code fragment for implementing the OMD of Figure 11

down side, this implementation strategy has memory overhead from the class id.
The use of dynamic cast trades some run-time performance overhead for safety.

Figure 13 shows yet another alternative implementation. In contrast to the
implementation of Figure 12, this implementation uses std:vector for keeping all
the singletons within an application. The second solution also does not loose any
type information, when the pointers to singleton objects are stored. Thus it does
not require any casting when the singleton pointer is accessed. This also does not
have any memory overhead from the id class (one per templated class). However
this does not address any issues about multi-threaded applications.

4 SUMMARY

The singleton pattern deals with a generic way of controlling instances of a class in
an application. The traditional use of the singleton pattern can cause problems in
mission-critical multi-tasking environment when the singleton pattern is present in
a layer that is common to all of the tasks and each task has its exclusive dynamic

166 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

5 ACKNOWLEDGEMENTS

#include <exception>

class singleton error : public std::exception
{
public:

virtual const char * what() const throw() {
return ”singleton error”;
}
};

template <class T>
class singleton {
public:

static T& instance(void);
protected:

singleton(void);
// not requiered to be virtual at this level
˜singleton();

private:
static T* instance ;
singleton(const singleton&);
singleton& operator=(const singleton&);
};

template <class T>
inline singleton<T>::singleton(void) {

if(instance){
throw singleton error();
}
instance = static cast<T*>(this);
}

template <class T>
inline singleton<T>::˜singleton() {

instance = 0;
}

template <class T>
inline T& singleton<T>::instance(void) {

if(!instance) {
throw singleton error();
}
return *instance ;
}

template <class T>
T* singleton<T>::instance = 0;

// application code
// my singleton1 is the interface for the application
class my singleton1 :

public singleton<my singleton1> {
public:

my singleton1(void){ }
virtual void hello world(void) = 0;
};

// my singleton1 impl is the actual implementation
class my singleton1 impl : public my singleton1 {
public:

my singleton1 impl(void) { }
virtual void hello world(void);
};

void my singleton1 impl::hello world(void)
{
}

int main(int /*argc*/, char* /*argv*/[])
{

my singleton1 impl ms1; // scoped singleton

my singleton1::instance().hello world();

return 0;
}

Figure 13: Singleton that does not use a vector and id for distinguishing different
singletons

memory pool. In this paper we have discussed one problematic area in the context
of multi-tasking programming environment and have proposed solutions that may
be appropriate in some situations. We have also presented different variations of
the implementation strategy and presented sample implementation details in C++.
Table 1 summarizes the pros and cons of different implementation strategy. There
may be different factors that govern the choice of one implementation strategy over
the other.

5 ACKNOWLEDGEMENTS

The authors wish to thank Mogens Hansen for providing constructive criticisms
on earlier drafts of this paper, answering many implementation related questions
promptly and suggesting two alternative ways of implementing the singleton pat-
tern that do not have any circular dependencies. Amit Bhonsle helped with the
implementation of some of the ideas presented in this paper.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 167

THREAD SPECIFIC SINGLETONS: HANDLING SINGLETON PATTERN ERRORS IN MULTI-THREADED
APPLICATIONS AND THEIR VARIATIONS

Implemen- Summary
tation of
Figure 5 Simple and straightforward implementation. Can be used for multi-

threaded applications. May have some performance problems if the
singleton implements a publisher-subscriber

Figure 8 This approach creates one singleton for every tasks within the ap-
plication. Even if any tasks is terminated, the singletons instance
would not have any effect on the rest of the application. Main-
tenance of enumeration types can create problems. One of the
problems is that in some cases, synchronization may need to be
implemented across different tasks. The application programmer
has to be careful about matching the value of the enumeration and
the type used in the cast.

Figure 10 With this approach, singletons can be pre-instantiated and deallo-
cated appropriately (order of deallocation can be specified). One
of the advantages is that application does not need to check the if

statement (faster access) whether the singleton instance is already
created. However on the downside, can create circular dependen-
cies, maintenance of the enumeration types is a potential source
of errors and type information is also lost. However even if a task
dies, the rest of the application would not be affected because of
singleton problems.

Figure 12 No circular dependencies, no programmer maintained enumeration
of types and no loss of type information. Uses vector for keeping
track of a list of singletons and each singletons must be instantiated
explicitly. Adds a bit of memory overhead as the class id needs to
be instantiated for each singletons. singletons are deallocated auto-
matically once the corresponding variable goes out of scope. Before
a singleton is used, the singleton needs to be explicitly instantiated.

Figure 13 There is no need for dynamic allocation and std::vector. Also
does not have any performance overhead from dynamic cast and
memory overhead from the singleton specific id (class member for
distinguishing between different singletons. However this does does
not address anything about multi-threaded error scenarios.

Table 1: Summary of different implementation strategy

168 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

5 ACKNOWLEDGEMENTS

REFERENCES

[Alexandrescu, 2001] Alexandrescu, A., ‘Modern C++Design: Generic Program-
ming and Design Patterns Applied’, Addison-Wesley Long-
man, Inc., ISBN: 0201704315, 352 pages, 2001.

[Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns,
C++Report, February 1995, pp. 24–27.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., ‘De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware’, Addison-Wesley Longman, Inc., ISBN: 0201633612,
395 pages, 1995.

[Pant, 2002] Pant, Y., ‘Using Rhapsody for Developing an OO Framework
for CDMA RAN’, Motorola Software Engineering Sympo-
sium, May 2002.

[Schmidt, 1999] Schmidt, D.C., Strategized Locking, Thread-safe Decorator,
and Scoped Locking: Patterns and Idioms for Simplifying
Multi-threaded C++ Components, C++Report, SIGS, vol. 11,
no. 9, September 1999.

ABOUT THE AUTHORS

Yagna Pant is a Senior Staff Engineer at Motorola. He has a Masters degree in
Software Engineering from the University New South Wales, Sydney, Australia. He
works on the development of object-oriented, real-time software. His other inter-
ests are object-oriented design patterns, software reuse, software metrics, cellular
systems, network management and voice over Internet Protocol.

Kazuhiro Ondo is a Senior Staff Engineer in the CDMA software development
group in Global Telecom Solution Sector in Motorola Inc. He is engaged in devel-
oping CDMA call processing software with Object Oriented program on real-time
embedded system. He can be reached at Kazuhiro.Ondo@motorola.com

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 169

mailto:Kazuhiro.Ondo@motorola.com

