#_,_/
JOURNAL OF OBJECT TECHNOLOGY

Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Representing
Design Patterns and Frameworks in UML —
Towards a Comprehensive Approach

Yasunobu Sanada and Rolf Adams
Faculty of Information Sciences, Hiroshima City University, Japan

Design patterns and frameworks have become important concepts in object develop-
ment. As well important is UML as the standard modeling language. But there is not
sufficient support to model design patterns and frameworks in design class diagrams
(DCDs) without using the extension mechanisms, that is, stereotypes, constraints,
and tagged values. Some approaches have been developed to improve the represen-
tation by extending UML. But they are either not comprehensive, or not well-defined,
or don’t consider the granularity or complexity of DCDs. In this paper we present
a more comprehensive and well-defined approach by using an example, distinguish
between DCDs, detailed DCDs, and design pattern CDs, define UML profiles for the
extensions, and outline how an UML tool can support the approach.

1 INTRODUCTION

Object-oriented techniques such as frameworks [13] and design patterns [8] make
designs more flexible, extensible, and reusable. When documenting the design in a
framework or when documenting the structure of a design pattern developers usually
use UML [3, 2, 9] design class diagrams (DCDs). But standard UML DCDs often
don’t provide important information necessary to understand or extend the design.

To solve this problem several approaches have been suggested [1, 5, 6, 7, 10].
The most important approach is described in [1] and called UML-F. The authors
suggest to use the UML extension mechanisms, that is, stereotypes, constraints, or
tagged values, to represent the designs in frameworks. But their approach suffers
from several shortcomings. First, they don’t clearly distinguish between the three
kinds of extension mechanisms and they don’t define UML profiles for the extensions
(until recently [4]). Second, their extensions are not comprehensive and there exist
several more extensions that are useful in understanding the design. Third, they
consider only partly the granularity of DCDs, such as distinguishing between DCDs
and detailed DCDs. Finally, they don’t consider the surface or complexity of DCDs,

Cite this article as follows: Yasunobu Sanada and Rolf Adams, Representing De-
sign Patterns and Frameworks in UML — Towards a Comprehensive Approach ,
in Journal of Object Technology, vol. 1 no. 2, July—August 2002, pages 143-154,
http://www.jot.fm /issues/issue_2002_07 /article3

http://www.jot.fm/issues/issue_2002_07/article3

#—/ REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
o — TOWARDS A COMPREHENSIVE APPROACH

that is, which mixture of extensions and diagrams result in an easy to understand
DCD.

The approach described in [5] uses the extension mechanisms to improve the
representation of so called configuration design patterns. Hence, this approach is
used to represent the static structure of some design patterns. But it resembles
partly the approach in UML-F and has also the problem that it is not comprehensive.

The approach described in [6] emphasizes the distinction between whitebox and
blackbox hotspots or variation points. The approach is based on changing the visual
appearance of DCDs and hence is not compatible with standard UML. Furthermore
it is certainly not comprehensive.

Another approach, based on designing a system as a composition of design pat-
terns, is described in [10]. Such an approach might be appropriate for some systems,
but it is certainly difficult to apply for many kinds of systems. It requires detailed
understanding of many design patterns and their interaction.

A similar but more general approach is described in [7]. The authors propose the
use of role diagrams to explicitly document the interaction between classes. Such
role diagrams are not part of standard UML. Furthermore they don’t explicitly
model variation points and their instantiation.

In this paper we present an approach that extends the work done before. It is
aimed to be more comprehensive and well-defined. To illustrate our approach we
use an example from an easy to understand application domain: a grade recording
framework. First we design the system with common DCDs, then we design the
system again with DCDs that contain our proposed extensions. After having hope-
fully convinced the reader that our extensions help in understanding or extending
a design, we provide definitions of all extensions as UML profiles. The approach
distinguishes between DCDs, detailed DCDs, and design pattern CDs, and this dis-
tinction should be reflected in an UML tool. So, we also explain how we changed
an existing UML tool so that it supports this distinction.

2 EXAMPLE: DEVELOPING A GRADE RECORDING SYSTEM

Assume that we want to develop a framework for recording grades. Such a system
can be used at any school, university, or company to record the grades. Here we
don’t consider developing the full requirements for this application. We assume
that developing the full requirements or domain model might reasonably result in
our parts of a design, although other designs are certainly possible.

In such a domain there exist certainly classes to represent students, teachers,
lectures, tests, etc. Teachers might offer reports, written and oral examinations, and
many other kinds of tests. A natural representation for such a structure uses the
Composite pattern [8]. A partly unresolved issue is the procedure of how teachers
compute the grades. Often teachers collect several grades and compute the final

144 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 USING UML EXTENSIONS IN THE EXAMPLE

grade by using a certain weighting function for the subgrades. But there is a lot of
variety in how the final grade is computed. So, we assume that the class 'Test” has
some varying method 'compute’ to compute the final grade out of the subgrades.
The initial design of the framework is shown in the DCD in Figure 1.

Student

prades:Grade []

1 1 | students
W register

Test

*

i 1
- {mﬂpogent
Comp051te o

— —r ~ Tomposite

| Leaf | il
Report Practlce |Exam1nat10n||Tests 1 |ProgrammianngineeringI

Figure 1: DCD of Grade Framework without Extensions

*
Fscore:double 1

Foomputel)
+add(Test)

o

—
-
-

In the following we consider how the variation point in this design should be
implemented. Different teachers usually use different weighting functions and even
one teacher usually uses different weighting functions for different lectures. So, it is
reasonable to assign the responsibility to implement the weighting function to the
class 'Lecture’ and use the Strategy pattern [8] to implement the method ‘compute’
in class "Test’. The resulting design is shown in Figure 2. We call this DCD a
detailed one because it cannot be refined anymore and the implementation of the
variation point has been resolved.

Student

algo. computeGrade(thisl)ﬁ prades:Grade []

. 1 | students
Test ¢ + | Wregister
—sooretdouble ! * Lecture
‘ —alge teaches

+ocompute () :Grade ¢ Q 1 1 roomput eGrade(Test)
+add({Test) * - = - _ - 1

+ i T Lomponent e [Context _ > S_tna_e_qy

- Compos 1te > T Strateg}jyr >
= [Leaf . Corrllpos ite - Concretestrategy
Report Practlce | Exam1nat10n| | Tests

| ProgrammingEngineer ingI |

Figure 2: Detailed DCD of Grade Framework without Extensions

3 USING UML EXTENSIONS IN THE EXAMPLE

In this section we will show the same DCDs for our grade recording framework
but add some information using the standard UML extension mechanisms, that

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 145

#—/ REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
o — TOWARDS A COMPREHENSIVE APPROACH

is, stereotypes, constraints, and tagged values. We explain which additional infor-
mation these extensions reveal and argue that those information is important in
understanding or extending the design. Finally we argue that the detailed DCDs in
Figure 2 and 4 are both complex, that is, its visual appearance and understanding
are complex. So, we introduce another extension, namely tagged values that indi-
cate the roles of participants in design patterns. In cases where the appearance of
a DCD becomes too complex by using collaboration diagrams, these tagged values
might be preferable.

Student

1 pradea:Grade []

Test 1 | students
W register

—score:int

* *
Hoompute() 1 {oovariant?
{wvariation,

1'—Lecture ‘ teaches
binding=dynamict* \ﬁ;l; 1-

badd(Test) T Jomponent
Composite -

B

-~ -

/L_- - — — -~ Tomposite
- - [Leaf v
Report Practice | Examination| | Tests 1 | ProgrammingEngineer ingl |

Figure 3: DCD of Figure 1 with Extensions

—
-
-

Figure 3 shows the DCD of Figure 1 but contains two extensions. These exten-
sions provide us the following information:

variation, binding=dynamic These tagged values show that the method ’com-
pute’ is a variation point in the design and that its instantiation is dynamic,
that is, it is necessary to support changing its instantiation at runtime.

covariant This constraint shows that the classes "Test” and 'Lecture’ are covariant
classes, that is, they work cooperatively and adding a subclass to ’Lecture’
might result in adding a subclass to "Test’; or vice versa.

The detailed DCD of Figure 2 with the added extensions is shown in Figure 4.
The extensions provide us the following information:

< Application Class>> An application specific class is "Programming Engineering
I’, that is, this class is not part of the framework, rather of the framework
instantiation.

extensible=false When we create a new application specific class, such as 'Pro-
gramming Engineering I’; the interface of the class must not be extended, that
is, the framework instantiator must not define new attributes or methods.

<Hook> The method 'computeGrade’ of class 'Lecture’ is a hook method, that
is, the framework instantiator must overwrite this method if adding a subclass.

146 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 USING UML EXTENSIONS IN THE EXAMPLE

Student

algo. computeGrade(thlsl)ﬁ) brades :Grade []

+ 1 | students

Test : . | Wregister
-score:double ! < t
<<Template>> i {fcovariant} -algo Lecture ‘ n
+oompute () :Grade ! Q 1 1 <<Hook>> teaches -
+add({Test) 5 T = roomputeGrade(Test) s 1
+ etAldorlthmeecture) ~ Component I R Context ~Strategy

s Compc>51te o T =

= Conllpos ite

[Leaf
Report Practlce | Exam1nat10n| | Tests

Figure 4: Detailed DCD of Figure 2 with Extensions

Strat egy T

\J'l,

-
-~

{incomplete)

- Concret aitrategy

<<ApplicationClass>>
ProgrammingEngineer ingI

-

{extensible=false}

< Template>> The method 'compute’ of class "Test’ is a template method that
uses the hook method 'computeGrade’ of class 'Lecture’ to implement the
algorithm for computing a grade.

incomplete The number of subclasses of class 'Lecture’ is not fixed, that is, the
framework instantiator can add new subclasses during framework instantia-
tion.

covariant Same as in Figure 3 described before.

Another important aspect in representing designs as DCDs is the complexity of
the layout and the visual appearance. In some cases, such as in Figure 2, using
collaboration diagrams to illustrate design patterns, might result in a DCD that
is difficult to understand. So, we suggest to use in such cases tagged values as an
alternative. The resulting detailed DCD is shown in Figure 5. In case some kind
of automatic or semi-automatic layout is supported in a tool, the visual appearance
depends on the layout algorithm. But we think that there are always cases where
tagged values are preferable to collaboration diagrams.

algo.computeGrade(this) ;I% Student

prades:Grade []
1 tdents
W register

. Tes !
{Compo31te—r0£e=00mpon§nt}

7 *

Fscorerdouble Lecture

*
“<Templates> ' Y {covariant}

Hocmputel) :Grade Q 1 1 +égﬁgﬁggGrade(Test) ‘ teaches
hadd(Test) * T - * 1
ksetdlgorithmilLecturel I ~Btrateqy

- Lfantext - Strategy T

[[[| {1ncomp1ete}/ Concreteltrategy
Practice Report Examination || Tests Prffé‘ Ji%a hoq(r:l}aaégf:si%>1
{Composite-role | [{Composite-role | [{Composite-role | [{Composite-role g yEny)
=Leaf} =Leaf} =Leaf} =Composite} {extensible=false}

Figure 5: Alternative Detailed DCD for Detailed DCD in Figure 4

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 147

#—d REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
o — TOWARDS A COMPREHENSIVE APPROACH

4 UML PROFILES FOR ALL EXTENSIONS

After having explained some of the extensions using an example in the previous
sections, we provide a complete definition of all extensions in this section. That
is, we provide explanations of all extensions in natural language and define UML
profiles [9] for them.

First we provide an overview of all extensions and classify them according to their
purpose or use. Figure 6 shows all extensions and classifies DCDs in three kinds:
DCDs, detailed DCDs, and design pattern CDs. The extensions for each kind of
DCD vary although some are in common. The distinction between a DCD and a
detailed DCD have been described in the example given before. A detailed DCD
results from a DCD by resolving the variation points. A design pattern CD is used
to describe the static structure of a design pattern. We don’t give an example of a
design pattern CD here, but we developed one for the design pattern to implement
enumerated types in Java as described in [12]. This pattern can alternatively be
used to represent the different kinds of tests in our example.

Document a pattern

Design Class Diagram > g?g;gnngigtiin Definition
S;E?;r;%on apply patterns /" <<InstanceClass>> ™
instantiation
<< Sl
<<Foral INewMethodssx {{¥ZEklate>>
extensible B
{1ncomplete} <<Foral lNewMethods>>
icovariant} extensible
final {incomplete}
{oovariant)
'\ final Y.
select pavams
Granularity g Document a pattern
Redesign

Detailed Design Class Diagram

' “<ApplicationClasss> ™
instantiatiocn
“<Hook>>
<<Template=>

<<Foral INewMaethodsz>
extensible
{incomplete}
{feovariant}

" final J

Figure 6: Three Kinds of DCDs with their Relationships and Extensions

The different kinds of UML class diagrams don’t necessarily correspond to dif-
ferent iterations in an iterative and adaptive development process [14]. In our grade
recording example the given DCD and detailed DCD can be produced in one iter-

148 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

4 UML PROFILES FOR ALL EXTENSIONS C"F_’

ation in case the variation point is considered an important part of the core archi-
tecture of the system. But they can as well be produced all in different iterations.

UML Profile for Design Patterns
Description of Stereotypes in the UML Profile for Design Patterns

We define four stereotypes in the UML profile for design patterns: <InstanceClass>>,
< ForAllNewMethods>>, < Template>>, and <Hook>> (see Table 1).

Table 1: Stereotypes for Design Patterns

‘ Stereotype ‘ Base Class ‘ Parent ‘ Tags ‘ Constraints
InstanceClass Class N/A extensible None
< InstanceClass> instantiation
final
ForAllNewMethods Constraint | N/A None None
<ForAllNewMethods>>
Hook Method N/A None None
<Hook>
Template Method N/A None None
< Template>

InstanceClass Its meaning is the same as in [5]. Generally, instance classes model
the varying concept encapsulated by the pattern. New instance classes are
defined during the pattern instantiation. So, they are a kind of classes and
based on an existing model element, Class, hence it should be a stereotype.
Required tags are extensible, instantiation, and final. If stereotype
<InstanceClass>> has tag final=true, a tag instantiation=replace must
be specified. The reason is, in order to create a pattern instance, no de-
scendant classes of an instance class can be created. Otherwise, the value of
the instantiation tag is not determined and an extensible tag should be
specified.

ForAllNewMethods The stereotype < ForAllNewMethods>> has the same mean-
ing as in [1] and indicates that the constraint is meant to hold for all newly
introduced methods. Usually constraints are described in OCL, a program-
ming language, or in natural language, and restrict a certain implementation.
By using the stereotype <ForAllNewMethods>> we can restrict all future im-
plementations that use a framework.

Template and Hook They indicate the roles of methods in the pattern. Tem-
plate and hook methods often appear as the gimmick of extensibility in design

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 149

#—/ REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
o — TOWARDS A COMPREHENSIVE APPROACH

patterns. Template methods define abstract behavior or generic instantiation
in interaction between classes and hook methods supply the concrete imple-
mentation. Treatment of template and hook methods is different from usual
methods, so it should be a stereotype.

Description of Tags in the UML Profile for Design Patterns

We define three tags in the UML profile for design patterns (see Table 2):

Table 2: Tags in the UML Profile for Design Patterns

‘ Tag ‘ Stereotype ‘ Type ‘ Multiplicity‘
extensible N/A UML::Datatypes::Boolean | 1
instantiation InstanceClass | UML::Enumeration: 1

{replace, extend}
final N/A UML::Datatypes::Boolean | 1

extensible When a new instance class is created, we can add new attributes and
new methods. Usually, if an instance class has tagged value instantiation=
replace, extensible=true is also specified. And in the case that the tagged
value instantiation=extend is attached and the instance class is used with-
out accessing through a reference to the base class or interface, the tagged
value extensible=true must be used.

instantiation The tag indicates how to instantiate classes. The tag can have one of
two values: replace or extend. The value replace represents, that when we
apply a pattern to design and create new instance classes, instance classes are
replaced. If a design pattern is designed in order to inherit a pattern instance
class, we specify the value extend.

final This keyword has the same meaning as the Java language keyword final. A
final class has no descendent classes. It cannot be used in some programming
languages, but we want to indicate this. An instance class with tag final
is an end leaf class and we cannot inherit the class. Since we can create
no descendent instance class, we use instantiation=replace and don’t use
instantiation=extend.

UML Profile for Frameworks

Description of Stereotypes in the UML Profile for Frameworks

We define four stereotypes in the UML profile for frameworks (see Table 3). The
only difference to design patterns is the use of <ApplicationClass>> instead of
<InstanceClass>:

150 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

4 UML PROFILES FOR ALL EXTENSIONS

Table 3: Stereotypes for Frameworks
‘ Stereotype ‘ Base Class | Parent ‘ Tags ‘ Constraints
ApplicationClass Class N/A extensible None
< ApplicationClass> instantiation
final
ForAllNewMethods Constraint | N/A None None
<ForAllNewMethods>>
Hook Method N/A None None
< Hook>
Template Method N/A None None
< Template>

ApplicationClass The meaning is the same as in [1]. It indicates application
specific classes and classes that exist only in the framework instance. When
design patterns are used in the framework instantiation process, classes with
stereotype <InstanceClass>> may become application specific classes.

Description of Tags in the UML Profile for Frameworks
We define five tags plus a special set of tags in the UML profile for frameworks (see

Table 4). The meaning of three tags is the same as or analogous to the meaning in
the profile for design patterns. The meaning of the additional tags is as follows:

Table 4: Tags in the UML Profile for Frameworks

‘ Tag ‘ Stereotype ‘ Type ‘ Multiplicity‘
variation N/A UML::Datatypes::Boolean | 1
extensible N/A UML::Datatypes::Boolean | 1
binding N/A UML::Enumeration: 1
{static, dynamic}
instantiation ApplicationClass| UML::Enumeration: 1
{replace, extend}
final N/A UML::Datatypes::Boolean | 1
PatternName-role | N/A UML::Datatypes::String 1

variation It is the same as in [1]. It means that the method implementation is
the varying concept that the pattern encapsulates. Or, in other words, the
method implementation depends on the framework instantiation. We add the
meaning that the method is a variation point that should be resolved in a

detailed DCD.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 151

#—d REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
o — TOWARDS A COMPREHENSIVE APPROACH

binding This tag indicates whether runtime instantiation is required for variation
points, and whether runtime change is used to realize variation points. Each
variation point should be marked by the binding tag and the value static or
dynamic (but not both, they are exclusive). UML-F has boolean tags static
and dynamic. They are exclusive values, but it should be one tag (binding)
and two assignable values (static and dynamic). This is the only addition
to the variation point, so it is a tagged value. The tag binding should be
specified with the tag variation.

PatternName-role These tags specify the roles of the participants in patterns.
The name of the tags has a fixed form: name of the pattern plus -role. The
values are strings and show the role name.

5 SUPPORT IN AN UML TOOL

We distinguish in our approach between three kinds of DCDs as shown in Figure 6.
An UML tool should reflect this distinction and their relationships and provide an
appropriate functionality. For example if an UML tool shows a DCD with a variation
point it should be possible to easily switch to a detailed DCD where a variation point
is instantiated, for example by selecting a menu item. Similar the opposite direction
should be supported. The user might not be familiar with a certain design pattern
and hence it should also be easy to switch forward and backward to a design pattern
CD or full definition of a design pattern.

We implemented some part of the above functionality by extending an open
source UML modeling tool, Argo/UML [11]. We added support of the standard UML
extension mechanisms and the possibility to switch between DCDs and associated
detailed DCDs. The output of a detailed DCD is shown in Figure 7.

| Grade — Siudant

regisier
0. o

I Tasl Lactura

ivate deuble soore M o l—ITea.cher

bic veidaddTest 1) -alge - teaches
<« Templatesspublic Grade compute(){variationstue, bi nd ngedy namic) < Hook zopublic void computeGrade Test1)

Hic void s=1Algorithm(Lecurs 1)

A A KX 3

I Fie port ” Pracice | | Examination ” Tesls I‘{>_

<< Applicationlasssx
Programmi ngEngi ne=ringl

public void compuleGrade (Test {j{exiensible=lalse]

Figure 7: The Output of a Detailed DCD with Argo/UML

152 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

6 CONCLUSIONS

6

CONCLUSIONS

Representing design patterns and frameworks in UML with DCDs is not adequate
when using no extensions. In this paper we present several extensions based on
using the standard extension mechanisms of UML, that is, stereotypes, constraints,
and tagged values. Our contributions are:

Fut

e providing a well-defined, more comprehensive set of extensions,
e using an example to illustrate the usefulness of our extensions,
e classifying DCDs in usual DCDs, detailed DCDs, and design pattern CDs,

e providing an outline of how UML tools should support our approach.

ure work should collect experience in using our approach.

REFERENCES

1]

Marcus Fontoura and Wolfgang Pree and Bernhard Rumpe, ‘UML-F: A Mod-
eling Language for Object-Oriented Frameworks’, In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP 2000), pages 63—
82, Springer, LNCS, Vol. 1850, 2000

James Rumbaugh and Ivar Jacobson and Grady Booch, ‘The Unified Modeling
Language Reference Manual’, Addison-Wesley, 1998

Grady Booch and James Rumbaugh and Ivar Jacobson, ‘The Unified Modeling
Language User Guide’, Addison-Wesley, 1998

Marcus Fontoura and Wolfgang Pree and Bernhard Rumpe, ‘The UML Profile
for Framework Architectures’, Addison-Wesley, 2002

Marcus Fontoura and Carlos José P. de Lucena, ‘Extending UML to Improve the
Representation of Design Patterns’, Journal of Object-Oriented Programming,
Vol. 13, No. 11, pages 12-19, 101communications, March 2001

Nadia Bouassida and Hanéne Ben-Abdallah and Faiez Gargouri, ‘A UML based
Design Language for Framework Reuse’, In Proceedings of the 7th International
Conference on Object-Oriented Information Systems (OOIS 2001), pages 211
221, Springer, 2001

Dirk Riehle and Thomas Gross, ‘Role Model Based Framework Design and In-
tegration’, In Proceedings of the 1998 Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA ’98), pages 117-133,
ACM Press, 1998

VOL

1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 153

ff——

REPRESENTING DESIGN PATTERNS AND FRAMEWORKS IN UML
— TOWARDS A COMPREHENSIVE APPROACH

8]

[10]

[11]
[12]

[13]

[14]

Erich Gamma and Richard Helm and Ralph Johnson and John Vissides, ‘Design
Patterns: Elements of Reusable Object-Oriented Software’, Addison-Wesley,
1995

‘OMG Unified Modeling Language Specification V.1.4’, September 2001,
http://www.uml.org/

Sherif M. Yacoub and Hany H. Ammer, ‘UML Support for Designing Software
Systems as a Composition of Design Patterns’, In UML 2001 - The Unified
Modeling Language. Modeling Languages, Concepts, and Tools, pages 149-165,
Springer, LNCS, Vol. 2185, 2001

Argo/UML homepage, http://argouml.tigris.org/

Paul A. Cairns, ‘Enumerated Types in Java’, Software-Practice and FExperience,
Vol. 29, No. 3, pages 291-297, Wiley, 1999

J. van Gurp and J. Bosch, ‘Design, Implementation and Evolution of Object
Oriented Frameworks’, Software-Practice and Ezxperience, Vol. 31, No. 3, pages
277-300, Wiley, 2001

Craig Larman, ‘Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process’, Prentice Hall, 2002

ABOUT THE AUTHORS

Yasunobu Sanada received the B.E. and M.E. degrees in Infor-
mation Science from Hiroshima City University, Japan, in 2000 and
2002 respectively. He joined Software Research Associates, Inc.,
Japan in 2002.

Rolf Adams received the ‘Diplom’ degree in computer science
from the University of Kaiserslautern, Germany, in 1987 and the ‘Dr.
rer. nat’ degree from the University of Karlsruhe, Germany, in 1992.
Since 1994 he is an Associate Professor at Hiroshima City University
in Japan. His email address is adams@ce.hiroshima-cu.ac.jp.

154

JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

http://www.uml.org/
http://argouml.tigris.org/
file:adams@ce.hiroshima-cu.ac.jp

