
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Debugging UML Designs
with Model Checking

Maŕıa del Mar Gallardo, Pedro Merino, Ernesto Pimentel
Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga 29071 Málaga, Spain

Model Checking is currently one of the most exciting techniques to improve the
quality of complex software systems. It is a computer aided verification method that,
in many cases, has discovered design bugs in early development steps, thus saving
time and costs to produce the final code. Although this technique is successfully
applied to many formal description techniques, it is not commonly used by the object
oriented programming community, in general, nor by UML developers, in particular.
In this paper, we provide a comprehensive overview and rules to integrate model
checking into UML-based designs, showing its usefulness from a practical point of
view, and giving some guidelines to exploit the benefits of the integration.

1 INTRODUCTION

The aim of this paper is to discuss the integration of UML[BRJ98], which is a
“de facto” standard method for modeling complex systems, and Model Checking
[CES86], [Holz91], [CW96], which is becoming the standard technique for automatic
software verification.1

Model Checking represents one of the most useful results of almost twenty years
of research in formal methods to increase the quality of software and other related
systems. A model checker is an automatic tool that is able to compare two descrip-
tions of the behavior of a given system. Usually, one description is considered as the
requirements and the other one as the actual design of a system to meet these re-
quirements. The main constraint is that the description of the design, usually called
the model, must be executable. This executability makes it possible to perform an
analysis of all the execution paths (exhaustive analysis).

The main usefulness of model checking is its capability to produce a counter-
example, or sequence of steps in the model, leading to the violation of a particular
property. This feature makes model checkers a very valuable tool for debugging,

1This work has been partially supported by projects TIC99-1083-C02-01, 1FD97-1269-C02-02
(TAP) and TIC2001-2705-C03-02

Cite this article as follows: Maŕıa del Mar Gallardo, Pedro Merino, Ernesto Pimentel: Debug-
ging UML Designs with Model Checking , in Journal of Object Technology, vol. 1, no. 2,
July–August 2002, pages 101–117, http://www.jot.fm/issues/issue 2002 07/article1

http://www.jot.fm/issues/issue_2002_07/article1

DEBUGGING UML DESIGNS WITH MODEL CHECKING

even when only a partial analysis of a system is performed.

Unified Modeling Language (UML) provides a wide range of notations to model
a software system from different perspectives, organizing them in five interrelated
views: design view, process view, implementation view, deployment view, and use
case view. The role of each of these views is complementary with the others, and the
last one must guide a software process. Each view presents both static and dynamic
aspects. In this paper, we are focusing on dynamic issues, which are commonly
described by means of interaction, state and activity diagrams. Thus, interaction
diagrams present the temporal ordering of the messages sent and received by a
collection of objects (sequence diagrams), and the structural organization of these
objects (collaboration diagrams). State diagrams represent state machines composed
of states, transitions, events and activities, and they are used to describe the dynamic
view of a system, particularly the behavior of an interface, a class or collaboration.
They are very useful to model reactive systems. Finally, activity diagrams show the
activity flow of a system, and the objects involved. Their usefulness is oriented to
defining the function of a system, and stressing the control flow among objects.

A major deficiency in most current CASE UML tools is that the analysis focuses
mainly on structural aspects. Some simple consistency analysis to avoid circular
inheritance, or to detect access violation to hidden features (methods in a class,
classes in a package, etc.), can be easily carried out by inspecting class, object,
component or deployment diagrams. However, it is more complex to detect when a
dynamic behavior described by several state diagrams corresponds to an acceptable
scenario. Our aim in this work is to show how a very well known technique (i.e.
model checking) can be applied to overcome the lack of tools to support exhaustive
analysis of diagrams describing dynamic behavior of UML models, specially when
modeling concurrent systems with UML.

In fact, the question of how to integrate both major techniques (model checking
and UML) is still open. Some authors have recently proposed algorithms and tools
to perform a limited kind of model checking of statecharts against temporal logic
([CW96],[LP99],[MLSH98].) However, from our point of view, this way of intro-
ducing model checking into daily programming work contains the same traditional
difficulties: you cannot convince the user to learn new (logic based) languages apart
from his/her usual notations if the benefits are not clear enough. The verification
technique has to be introduced gradually, by using (and comparing) existing specifi-
cations (UML views), and the use of new specification languages must be considered
as a last step for more expert users. The same idea of verifying only UML notations
is also in [SKM01] and [Barn01]

The remainder of the paper is basically devoted to answering the following ques-
tions: Which are the main technical aspects of a model checker? Where and how
is it practical to include model checking into UML based developments? Which
are the closest verification tools to inspire the construction of UML-oriented ones?
And, finally, can we expect to use the same optimization methods to deal with the
well-known state space explosion problem?

102 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

2 MODEL CHECKING

2 MODEL CHECKING

For many years, verification of software systems followed the traditional deductive
approach. With this approach the software engineer has to write both the specifi-
cation of the system and the properties in some logic and, in the best of cases, a
theorem-proving tool assists in the debugging task. But due to the need of ingenuity
to obtain good results, only a small number of teams has been able to apply this
approach to industrial-scale software.

Model Checking has appeared as a clear opponent to the traditional verification
method, particularly in developing reliable software for concurrent systems. Al-
though you often have to pay close attention when writing the desired properties,
the program can be encoded with formalisms very similar to programming lan-
guages, and some current tools can even work with the final code. The verification
task consists in ensuring that all, some or no execution paths, in the current design
for the software, satisfy a particular (desirable/undesirable) property. This task
is carried out automatically by generating and analyzing all the potential (finite)
states of the program (exhaustive analysis). When required, the tool produces the
counter-examples to know what paths satisfy/violate the property.

The first model checkers worked by constructing the whole structure of states
as a prior step to checking the properties. The structure is obtained by executing
all potential interleavings of the concurrent program. The properties were mainly
liveness properties expressed with Temporal Logic, using formulae such as 2 p (“p is
always true”), 3 p (“eventually p will be true”), p U q (“q will be true, and p will be
true in all previous states”) or© p (“p will be true in the next state”), p being any
kind of proposition or even another temporal formula. Of course, nesting temporal
operators increase the complexity of the verification, and decrease the confidence
in the meaning of the formula. Nevertheless, the use of logic-based formalisms for
debugging UML systems should be studied in the context of OCL. In any case, this
is beyond the scope of this work.

Modern model checking tools work by translating the formula into an automaton
to recognize the correct/incorrect execution paths. As the verification is performed
as soon as the states are produced (and stored), the method does not require the
previous construction of the whole state graph. This is why it is called on-the-
fly model checking. Maybe SPIN [Holz91] is the most representative tool of this
kind. One clear advantage of on-the-fly vs. structure-based analysis is the fact that
the on-the-fly method can produce a partial analysis of very large systems, thus
giving some information about the analyzed part. In opposition, in these cases, the
structure-based method cannot start the verification.

The main problem of model checking is how to deal with very large state space
systems. Although there are many real examples where the verification can be
done with standard exhaustive verification, fortunately, current tools also implement
several optimization techniques to analyze complex systems with more than 100.000
states.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 103

DEBUGGING UML DESIGNS WITH MODEL CHECKING

The success of model checking to debug models of concurrent software (writing
the models in academic formal description techniques and properties with temporal
logic) has made this term relatively popular to describe other verification methods
such as: 1) the automatic analysis of general correctness properties of concurrent
systems that do not require a particular representation with a property language
(absence of deadlock, non-reachable code, arithmetic errors, etc), 2) the automatic
verification of more commercial formal description techniques (for example SDL
[ITU100] confronted with Message Sequence Chart [ITU120] (MSC)), and 3) the
automatic analysis of standard programming languages (C, C++, Java), usually by
automatic model extraction from the source code to the input language of existing
efficient model checking tools like SPIN.

Nevertheless, the use of model checking for debugging object-oriented software
is still a novel topic, which is now being addressed in many international confer-
ences. In particular, the integration of model checking into UML based tools is
currently slow. Major commercial tools do not support the automatic analysis of
model behavior, and in case they do, they only consider a limited analysis of general
properties in statecharts. In the next section, we discuss one approach to introduce
model checking in these tools.

3 MODEL CHECKING UML

Identifying the input for the Model Checkers

UML provides a wide range of notations to model a software system, giving de-
tails concerning both structure and behavior of the system. In addition, different
mechanisms are also used to describe static and dynamic aspects of the same view.
To cover all these possibilities, UML includes structural (class, object, component,
deployment) and behavioral (use case, sequence, collaboration, state, activity) dia-
grams. All these diagrams are distributed in the so-called views, giving five different
perspectives of the same model, all of them organized around use cases. Dynamic
behavior is captured by four different kinds of diagrams: sequence diagrams, in-
teraction diagrams, state diagrams, and activity diagrams. The two first kinds of
diagrams are semantically equivalent, and both give the same information, but fo-
cusing on different aspects. A similar situation is given with the last two diagrams:
a state diagram shows the answer of an entity to external events, and an activity
diagram focuses on the flow control of the actions.

Figures 1 to 3 represent some of the views of a compact disk (CD) system. The
class diagrams in Figure 1 show the invocation relation among the control part
(CD PLAYER), the physical drive manager (CD DRIVE) and the user (represented in
UML as an actor plus an observer). Figure 2 contains the statecharts for the dynamic
behavior of the system, and Figure 3 contains a sequence diagram representing one
of the expected scenarios.

104 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 MODEL CHECKING UML

4

MODEL CHECKING UML
Identifying the input for the Model Checkers

UML provides a wide range of notations to model a software system, giving details
concerning both structure and behavior of the system. In addition, different mechanisms are
also used to describe static and dynamic aspects of the same view. To cover all these
possibilities, UML includes structural (class, object, component, deployment) and behavioral
(use case, sequence, collaboration, state, activity) diagrams. All these diagrams are
distributed in the so-called views, giving five different perspectives of the same model, all of
them organized around use cases. Dynamic behavior is captured by four different kinds of
diagrams: sequence diagrams, interaction diagrams, state diagrams, and activity diagrams.
The two first kinds of diagrams are semantically equivalent, and both give the same
information, but focusing on different aspects. A similar situation is given with the last two
diagrams: a state diagram shows the answer of an entity to external events, and an activity
diagram focuses on the flow control of the actions.

Actor

CD_DRIVE

detecting()

CD_PLAYER

load()
stop()
back()
forward()
play()
power()
cd_detected()
no_cd_detected()

Observer

silence()
music()
open()

closed()

Figure 1. Class diagrams for a CD system

Figure 1: Class diagrams for CD system

5

IDLE

CLOSED OPEN

CHECKING_CD

CLOSED OPEN

CHECKING_CD

LOAD ^OPEN

PLAY
^DETECTING

NO_CD_DETECTED /

PLAYING

PLAY

BACK

FORWARD

POWER
OFF CD_ DETECTE

D ^MUSIC

POWER
^SILENCE

POWER
^SILENCE

LOAD ^CLOSED

STOP ^SILENCE LOAD
^SILENCE

POWER
^SILENCE

Figure 2. Statecharts for CD_PLAYER (left) and CD_DRIVE (right)

Figures 1 to 3 represent some of the views of a compact disk (CD) system. The class
diagrams in Figure 1 show the invocation relation among the control part (CD_PLAYER), the
physical drive manager (CD_DRIVE) and the user (represented in UML as an actor plus an
observer). Figure 2 contains the statecharts for the dynamic behavior of the system, and
Figure 3 contains a sequence diagram representing one of the expected scenarios.

 : Observer : Actor : CD_PLAYER : CD_DRIVE

power

load

load

play

silence

open

closed

detecting

cd_detected
music

Figure 3. A sequence chart for a desirable behavior

NO_CD

CD_INSERTED

DETECTING
^NO_CD_DETECTED

DETECTING
^CD_DETECTED

Figure 2: Statecharts for CD PLAYER (left) and CD DRIVE (right)

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 105

DEBUGGING UML DESIGNS WITH MODEL CHECKING

5

IDLE

CLOSED OPEN

CHECKING_CD

CLOSED OPEN

CHECKING_CD

LOAD ^OPEN

PLAY
^DETECTING

NO_CD_DETECTED /

PLAYING

PLAY

BACK

FORWARD

POWER
OFF CD_ DETECTE

D ^MUSIC

POWER
^SILENCE

POWER
^SILENCE

LOAD ^CLOSED

STOP ^SILENCE LOAD
^SILENCE

POWER
^SILENCE

Figure 2. Statecharts for CD_PLAYER (left) and CD_DRIVE (right)

Figures 1 to 3 represent some of the views of a compact disk (CD) system. The class
diagrams in Figure 1 show the invocation relation among the control part (CD_PLAYER), the
physical drive manager (CD_DRIVE) and the user (represented in UML as an actor plus an
observer). Figure 2 contains the statecharts for the dynamic behavior of the system, and
Figure 3 contains a sequence diagram representing one of the expected scenarios.

 : Observer : Actor : CD_PLAYER : CD_DRIVE

power

load

load

play

silence

open

closed

detecting

cd_detected
music

Figure 3. A sequence chart for a desirable behavior

NO_CD

CD_INSERTED

DETECTING
^NO_CD_DETECTED

DETECTING
^CD_DETECTED

Figure 3: A sequence chart for a desirable behavior

Most of UML-based tools include some possibilities of consistency analysis and
automatic code generation. However, only structural information is used to do this.
Our idea is to apply model checking to compare the behavior described by a se-
quence diagram (or a collaboration diagram) with the behavior expressed by a set
of state diagrams. This analysis will ensure the right correspondence between a
sequence diagram giving the interaction among a group of objects, and the state-
charts exhibiting their individual behavior. Obviously, model checking could also be
applied to analyze the correspondence between one or more activity diagrams and
a collaboration diagram.

Rules for practical Model Checking

If we consider that state and sequence diagrams are the two most representative
notations to describe the dynamic behavior of a system, then three main phases
have to be covered to apply model checking. In every phase, a set of rules is given
to obtain satisfactory results.

Analyzing general properties of Statecharts (Phase 1)

The exhaustive analysis of isolated statecharts or systems composed by several ones
is the first step to discard errors. This analysis consists in producing the configu-

106 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 MODEL CHECKING UML

6

POWER_OFF

POWER_ON

OPEN

LOADED

MUSIC

 ^POWER

 ^LOAD

 ^LOAD

 ^PLAY

 ^PLAY

 ^FORWARD
 ^BACK

 ̂ POWER

Figure 4. The statechart representing an actor’s behavior

Most of UML-based tools include some possibilities of consistency analysis and automatic
code generation. However, only structural information is used to do this. Our idea is to apply
model checking to compare the behavior described by a sequence diagram (or a
collaboration diagram) with the behavior expressed by a set of state diagrams. This analysis
will ensure the right correspondence between a sequence diagram giving the interaction
among a group of objects, and the statecharts exhibiting their individual behavior.
Obviously, model checking could also be applied to analyze the correspondence between
one or more activity diagrams and a collaboration diagram.

Rules for practical Model Checking

If we consider that state and sequence diagrams are the two most representative notations to
describe the dynamic behavior of a system, then three main phases have to be covered to
apply model checking. In every phase, a set of rules is given to obtain satisfactory results.

Analyzing general properties of Statecharts (Phase 1).

The exhaustive analysis of isolated statecharts or systems composed by several ones is the
first step to discard errors. This analysis consists in producing the configurations (global
states) of the system. As model checking works automatically, the system to be analyzed
must be closed with respect to the environment. This means that the user of this part of the
software has to be completely modeled. For example, the statechart of Figure 4 represents a
real user (an actor) of the CD system. Verification must start by identifying an initial global
state. The initial global state of the system composed by the actor, the CD_PLAYER, and the
CD_DRIVE is

[POWER_OFF, IDLE, CD_INSERTED]

Figure 4: The statechart representing an actor’s behavior

rations (global states) of the system. As model checking works automatically, the
system to be analyzed must be closed with respect to the environment. This means
that the user of this part of the software has to be completely modeled. For exam-
ple, the statechart of Figure 4 represents a real user (an actor) of the CD system.
Verification must start by identifying an initial global state. The initial global state
of the system composed by the actor, the CD PLAYER, and the CD DRIVE is

[POWER OFF, IDLE, CD INSERTED]

And the state corresponding to the system while the CD system is working could
be

[MUSIC, PLAYING, CD INSERTED]

If queues are considered to store events, then they are also appended to the
global state. With this representation, the model checking tool can interleave the
user steps with the CD system in order to inspect general properties such as end-
states, conflicting transitions, non-consumed events, etc. The use of interleaving
allows us to deal with many semantic variants of statechart, that depend on the
application domain. The most efficient way to carry out this search is a depth-
first search with a memory to store the visited states. When an error is found, the
sequence of states stored in the stack used for searching is employed to construct a
path towards the error.

For example, in Figure 5, the sequence diagram represents a discovered potential
error consisting of sending a BACK event that is not consumed by the CD PLAYER

statechart. The reason is clear: in the design of the CD PLAYER, we did not take

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 107

DEBUGGING UML DESIGNS WITH MODEL CHECKING

7

And the state corresponding to the system while the CD system is working could be
[MUSIC, PLAYING, CD_INSERTED]

If queues are considered to store events, then they are also appended to the global state. With
this representation, the model checking tool can interleave the user steps with the CD system
in order to inspect general properties such as end-states, conflicting transitions, non-
consumed events, etc. The use of interleaving allows us to deal with many semantic variants
of statechart, that depend on the application domain. The most efficient way to carry out this
search is a depth-first search with a memory to store the visited states. When an error is
found, the sequence of states stored in the stack used for searching is employed to construct
a path towards the error.

For example, in Figure 5, the sequence diagram represents a discovered potential error
consisting in sending a BACK event that is not consumed by the CD_PLAYER statechart. The
reason is clear: in the design of the CD_PLAYER, we did not take into account that the user
can press BACK without a disk in the system. There are other two similar errors in the system
(for PLAY and FORWARD events). All these errors are found inspecting 29 unique system
states, but generating 38 states (note that some states are visited several times). Each state
requires between 76 and 180 bytes, whereas the verification time is negligible.

 : Actor : CD_PLAYER : CD_DRIVE

play

detecting

no_cd_detected

back

Warning
unexpected
message

Figure 5. Scenario with unexpected events

One critical decision at this first verification step is how many details will be considered in
the statecharts (including the actors). The complexity increases the number of states (and
decreases the quality of the analysis). So, if we need to improve the analysis, accessory
details, which are not part of the behavior, must be removed. However a limit must always
be observed: reducing the complexity cannot change the basic behavior of the system. For
example, removing regions to limit concurrency is not a good idea.

In summary, the rules for successful verification of general properties are the following:

Figure 5: Scenario with unexpected events

into account that the user can press BACK without a disk in the system. There are
other two similar errors in the system (for PLAY and FORWARD events). All these
errors are found inspecting 29 unique system states, but generating 38 states (note
that some states are visited several times). Each state requires between 76 and 180
bytes, whereas the verification time is negligible.

One critical decision at this first verification step is how many details will be
considered in the statecharts (including the actors). The complexity increases the
number of states (and decreases the quality of the analysis). So, if we need to
improve the analysis, accessory details, which are not part of the behavior, must
be removed. However a limit must always be observed: reducing the complexity
cannot change the basic behavior of the system. For example, removing regions to
limit concurrency is not a good idea.

In summary, the rules for successful verification of general properties are the
following:

1.1 Construct the smallest environment to check the system

1.2 Check for a few sets of general errors, and remove these errors before analyzing
the cause of the others

1.3 Do not move to the following phase without a precise knowledge about how
the current state diagrams work. It is necessary to know the reasons for errors
and warnings.

108 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

3 MODEL CHECKING UML

Verifying Statecharts against desirable Sequence diagrams (Phase 2)

The second phase in verification usually consists in checking for very particular
properties of the designed system. The most practical way is to employ a sequence
diagram to describe a potential desirable behavior in the system. If we want to check
that this behavior is possible in the statecharts, then the model checking tool can
translate this sequence diagram into an automaton to inspect the evolution of the
global states previously inspected in Phase 1 (again with the environment included).
For this purpose, states are associated to the sequence diagram at the points where
some interesting event occurs in some entity, and its state is included in the global
state. For example, in the extended global state

[LOADED,CHECKING CD,CD INSERTED,sent(CD DRIVE,cd detected)]

the state of the automaton is represented by sent (CD DRIVE, cd detected), and
it captures that event cd detected was sent by CD DRIVE.

The automaton evolves synchronized with the system being debugged, observing
events in the statecharts, and when it reaches a final state (the last event in the
sequence diagram), then the property is verified. Of course, the automaton is never
accessible to the user, and the verification tool must keep it hidden, but it allows
extending the basic verification method in Phase 1 to deal with the sequence diagram
verification. For example, by producing and inspecting 10 states, it is possible to
verify the property in Figure 3 (and partially in Figure 4). Thus, we can ensure
that this scenario can be reached by the interaction of the statecharts in the current
design.

However, this verification work is not so easy. What happens when the system
produces an unexpected event with respect to the sequence diagram? Must it be
ignored or must the tool discard the current path and try another one? The most
convenient answer is ”it depends on the event”. If the unexpected event is taking
an active part in the scenario represented by the sequence diagram, then it cannot
be ignored. Otherwise, the analysis can go on with the same path, ignoring the
last event. The general principle is that the underlying automata representing the
sequence diagram only moves or discards an execution path when it finds observable
events. So the model checking tool must report success in the verification if all
observable events in the trace are consistent with the partial ordering of events that
is defined by the sequence diagram.

In order to have a practical verification tool, the set of observable events should
be defined for every verification, according to the following rules:

2.1 When you are interested in obtaining at least the sequence of events in the
sequence diagram, even if other events occur, then specifically define as ob-
servable the events which are in the diagram. Others will be ignored (and
allowed in the trace produced by the statecharts.)

2.2 When the sequence diagram represents exactly the desired sequence of events,

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 109

DEBUGGING UML DESIGNS WITH MODEL CHECKING

and no others should occur, then it is necessary to define all events in the
system as observable.

If the verification of the statecharts against the sequence diagram is not possible
with these rules, then conclude that the desired scenario is not reachable by the
system. In case of doubt, proceed by extending or restricting the sequence diagram
until the verification, with one of the previous rules, works. For example, a property
like the one in Figure 6 is not verified by the system composed by the statecharts
in Figures 1 and 3, whichever observability rule you use.

Verifying Statechart against non-desirable Sequence diagrams (Phase 3)

However, the verification of a set of desirable sequence diagrams should not be
considered sufficient when debugging the dynamic behavior of UML systems. An
additional verification of undesirable scenarios will exclude some critical errors. For
this purpose, a set of simple diagrams could be built and checked in the same way,
and with the same rules, as before. But now we expect that the model checking
tool will never produce success in the verification. Verification means errors. For
example, a diagram like the one in Figure 6 represents a situation where the CD

system plays music without an inserted disk (see the two last events in the sequence
diagram.) The verification tool analyzes 18 states looking for a trace to satisfy the
scenario. And finally, it discards the verification of this malicious scenario.

Finally, actions could be considered equivalent to events from the verification
point of view. Actions could be present in the statecharts and sequence diagrams,
and when defined as observable, the actions in the trace should occur in the same
order as expected in the sequence diagram.

4 ABOUT EFFICIENT VERIFICATION TOOLS

Verification with state and sequence diagrams has to be carried out automatically
and efficiently. Using the composite global state (with the underlying automata-
based representation for the sequence diagram), a model checker can automatically
perform the three verification phases. Of course, the exhaustive analysis has to
remove duplicate states and to detect loops when performing the depth first search-
ing. Furthermore, when debugging realistic systems, the model checker must also
implement strategies to solve the state explosion problem. Some of these strategies
are well known [Holz91]. Partial order reduction is a method for replacing several
interleaved sequences of events (or actions) by only one that represents the whole
set. The State compression method reduces the use of memory by compressing the
representation of the states without losing information, but increasing the verifi-
cation time. Bit-state analysis represents states as bits in a hash table instead of
storing the whole global state, so in many cases the analysis is only partial.

110 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

4 ABOUT EFFICIENT VERIFICATION TOOLS

9

are in the diagram. Others will be ignored (and allowed in the trace produced by the
statecharts.)

2.2 When the sequence diagram represents exactly the desired sequence of events, and no
others should occur, then it is necessary to define all events in the system as observable.

If the verification of the statecharts against the sequence diagram is not possible with these
rules, then conclude that the desired scenario is not reachable by the system. In case of
doubt, proceed by extending or restricting the sequence diagram until the verification, with
one of the previous rules, works. For example, a property like the one in Figure 6 is not
verified by the system composed by the statecharts in Figures 1 and 3, whichever
observability rule you use.

Verifying Statechart against non-desirable Sequence diagrams (Phase 3).

However, the verification of a set of desirable sequence diagrams should not be considered
sufficient when debugging the dynamic behavior of UML systems. An additional
verification of undesirable scenarios will exclude some critical errors. For this purpose, a set
of simple diagrams could be built and checked in the same way, and with the same rules, as
before. But now we expect that the model checking tool will never produce success in the
verification. Verification means errors. For example, a diagram like the one in Figure 6
represents a situation where the CD system plays music without an inserted disk (see the two
last events in the sequence diagram). The verification tool analyzes 18 states looking for a
trace to satisfy the scenario. And finally, it discards the verification of this malicious
scenario.

 : Observer : Actor : CD_PLAYER : CD_DRIVE

detecting

power

load

load

play

silence

open

closed

no_cd_detected
music

Figure 6. A sequence diagram for an erroneous behavior Figure 6: A sequence diagram for an erroneous behavior

The efficiency of these well-known techniques can be further augmented with
the more recent Abstraction method [CGL94]. In general, abstracting the model of a
system means to construct a simpler specification which is equivalent to the initial
one with respect to the properties to be verified. The abstract model can be verified
using less time and memory. The classical method for constructing the abstract
model consists in generating the state graph prior to verification, and developing ad
hoc new model checking tools depending on the way of abstracting. An alternative
approach is to produce a new textual model by transformation of the initial one,
in such a way that it can be analyzed with the same model checker employed with
the original one. Furthermore, new transformations can be applied to the already
abstracted versions. Based on our successful experience employing this approach
with the languages Promela [GM99] and SDL [GM00], we can argue that the same
method could be employed to improve the verification of statecharts against sequence
diagrams.

The most powerful abstraction of statecharts to verify sequence diagrams is the
abstraction of events. This kind of abstraction consists in using a single name of
event (an abstract event) to represent a set of real events. For example, the ab-
stract event button could represent all the events due to the actor requests (power,
load, play, forward and back), and the abstract event effect could represent
the answers from the CD PLAYER. If we make abstraction of events, then we have to
transform the statecharts to work with the abstract events. Fortunately, this work

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 111

DEBUGGING UML DESIGNS WITH MODEL CHECKING

11

IDLE

CLOSED OPEN

CHECKING_CD

PLAYING

POWER
OFF

CLOSED OPEN

CHECKING_CD

button

CD_
DETEC

TED
^button

button
^effect

button
^effect

button
^effect

button
^effect

button ^effect

button ^effect

button
^effect

button /
 ^DETECTING

NO_CD_DETECTED /

Figure 7. Abstract version of CD_PLAYER

The verification with abstraction of events works as follows. Given a model M composed by
a set of statecharts and a sequence diagram SD, we proceed by constructing and checking a
more abstract model M* against an abstract sequence diagram SD* until deciding about the
satisfaction of SD against M, or until finding specific errors (phases 2 and 3 in our proposed
methodology). The abstraction in both diagrams is done using the same abstract events. The
verification of undesired behaviors (Phase 3) is done directly: If M* does not verify SD*,
then M does not verify SD. Therefore, M can be employed to continue the development
cycle (e.g. code generation). For example, let us assume that the simulation of statecharts in
Figure 2 exhibits too many unexpected errors, probably because it is a very early version. If
we want to have a minimum confidence about its correctness, we could try to check
sequence diagrams considering the number of events that the actor and the system send,
without taking care about the events themselves. For instance, the sequence diagram in
Figure 8 (left) shows a non-desirable SD (it is forbidden for this system to start the music
automatically after inserting the CD; the user is required to explicitly push the button play.)
Figure 8 (right) shows its corresponding abstract version (SD*). The model checker will now
report that the system (using the statechart in Figure 7) will never produce a sequence of
abstract events like the one in Figure 8 (right), and we could conclude that the initial system
never produces a sequence like the one in Figure 8 (left). It is worth noting that the
computational effort in verifying the abstract version has been reduced with respect to the
verification of the initial model. In addition, as an abstract sequence diagram represents a set
of standard ones, the abstraction reduces the number of sequence diagrams to be analyzed
against the original model to obtain the same result.

Figure 7: Abstract version of CD PLAYER

can be done fully automatic. For example, Figure 7 shows an abstract version of
CD PLAYER with the two abstractions of events described above. Note that now the
statechart exhibits more non-deterministic behaviors. For example, two transitions
starting at state CLOSED can be fired with the same event button. This is due to the
loss of precision introduced by the abstract event button: How to know if button is
representing play or load to fire the correct transition? We need to introduce non-
determinism in order to preserve at least the same potential execution sequences as
in the initial statechart. This is a key point to obtain useful verification results.

The verification with abstraction of events works as follows. Given a model
M composed by a set of statecharts and a sequence diagram SD, we proceed by
constructing and checking a more abstract model M∗ against an abstract sequence
diagram SD∗ until deciding about the satisfaction of SD against M , or until finding
specific errors (phases 2 and 3 in our proposed methodology.) The abstraction in
both diagrams is done using the same abstract events.

The verification of undesired behaviors (Phase 3) is done directly: If M∗ does not
verify SD∗, then M does not verify SD. Therefore, M can be employed to continue
the development cycle (e.g. code generation). For example, let us assume that the
simulation of statecharts in Figure 2 exhibits too many unexpected errors, probably
because it is a very early version. If we want to have a minimum confidence about
its correctness, we could try to check sequence diagrams considering the number of
events that the actor and the system send, without taking care about the events
themselves. For instance, the sequence diagram in Figure 8 (left) shows a non-

112 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

4 ABOUT EFFICIENT VERIFICATION TOOLS

12

 : Observer : CD_PLAYER

power

load

load

silence

open

closed

music

 : Actor : Observer
 : CD_PLAYER : Actor

effect

effect

button

button

effect

button

effect

 Figure 8. An undesirable behaviour (left), and its abstract version (right)

However, the loss of precision in the events and the addition of non-determinism in the
statecharts make the verification of desirable behaviors (Phase 2) a more demanding task.
One abstract event represents a set of real events, so the occurrence of the abstract event is
not conclusive to decide about the occurrence of a real one. The same problem appears when
the tool reports an error in the verification of undesirable behaviors (Phase 3). In both cases,
we have to use the abstract trace in order to check whether a particular sequence of events
represented by this one, is possible in the initial model. If the sequence exists in M, then we
have information to give a result regarding the behavior of M. Otherwise, we have to revise
the abstraction (maybe using a different one), produce a new abstract model, and repeat the
verification.

Apart of abstracting events, it is also possible to abstract other elements in the specification
like variables (attributes), or transition guards. But a discussion about this is out of scope of
this work.

Although our proposal is to construct specific model checking tools for UML, taking into
account that the UML1.4 specification15 considers a number of semantic variation points for
statecharts, one practical way to get experience with our verification method is the
translation from UML designs into input languages for existing tools. A direct mapping can
be made from statecharts to SDL specifications, and from sequence diagrams to MSCs.
Then, we may use existing tools to perform the three phases reported above, and also to
support the optimization techniques, including the abstraction method implemented for SDL.
For example, the verification experiences described in this paper were done with this
translation scheme.

Figure 8: An undesirable behaviour (left), and its abstract version (right)

desirable SD (it is forbidden for this system to start the music automatically after
inserting the CD; the user is required to explicitly push the button play.) Figure 8
(right) shows its corresponding abstract version (SD∗). The model checker will
now report that the system (using the statechart in Figure 7) will never produce a
sequence of abstract events like the one in Figure 8 (right), and we could conclude
that the initial system never produces a sequence like the one in Figure 8 (left.) It
is worth noting that the computational effort when verifying the abstract version
has been reduced with respect to the verification of the initial model. In addition,
as an abstract sequence diagram represents a set of standard ones, the abstraction
reduces the number of sequence diagrams to be analyzed against the original model
to obtain the same result.

However, the loss of precision in the events and the addition of non-determinism
in the statecharts make the verification of desirable behaviors (Phase 2) a more
demanding task. One abstract event represents a set of real events, so the occurrence
of the abstract event is not conclusive to decide about the occurrence of a real one.
The same problem appears when the tool reports an error in the verification of
undesirable behaviors (Phase 3). In both cases, we have to use the abstract trace
in order to check whether a particular sequence of events represented by this one, is
possible in the initial model. If the sequence exists in M , then we have information
to give a result regarding the behavior of M . Otherwise, we have to revise the
abstraction (maybe using a different one), produce a new abstract model, and repeat

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 113

DEBUGGING UML DESIGNS WITH MODEL CHECKING

the verification.

Apart of abstracting events, it is also possible to abstract other elements in the
specification like variables (attributes), or transition guards. But a discussion about
this is out of scope of this work.

Although our proposal is to construct specific model checking tools for UML,
taking into account that the UML1.4 specification [OMG02] considers a number of
semantic variation points for statecharts, one practical way to get experience with
our verification method is the translation from UML designs into input languages
for existing tools. A direct mapping can be made from statecharts to SDL speci-
fications, and from sequence diagrams to MSCs. Then, we may use existing tools
to perform the three phases reported above, and also to support the optimization
techniques, including the abstraction method implemented for SDL. For example,
the verification experiences described in this paper were done with this translation
scheme.

5 CONCLUDING REMARKS

Our recommendations to verify statecharts and sequence diagrams provide a well
structured methodology to debug complex UML systems prior to implementation.
Verification can be fully automatic and no new specifications have to be created.
The method is specially useful to find design errors in the first versions of the model.

Our proposal is complementary to other related work in several aspects. The
use-case tree [Barn01], proposed by Barnard, represents the whole set of completed
scenarios expected in the model. It is assumed that the tree is constructed from
the statecharts. Although this representation of the state space is constructed au-
tomatically, the analysis of scenarios with use-case trees was proposed to be done
manually due to the fact that the scenarios (the use cases) were given informally.
But, even if the scenarios were formalized (e. g. as sequence diagrams) the con-
struction of the whole use-case tree (as a graphical view of the system) limits the
possibilities for automatic verification for two reasons. The first is that a path in the
use-case tree could contain all model events, so the scenarios should also consider ev-
ery event, including those produced by objects which are not actually participating
in the scenario. The second is the impossibility to store the whole tree for realistic
systems. It is very frequent to have millions of composite states for real systems,
and use-case tree analysis will exhibit the same constraints as old structure-based
model checking.

These problems in Barnard’s method are overcome in our proposal by considering
partial verification as a debugging method. Our observability conditions combined
with the objective (desirable/undesirable sequence diagram) for just one property in
each verification reduces the size of the scenarios. The underlying automata-based
verification for sequence diagrams allows us to explore the state space with an on-
demand generation of states (on-the-fly model checking). This strategy, combined

114 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

5 CONCLUDING REMARKS

with discarding paths that satisfy/violate the current property under verification
and with the abstraction method, allows the analysis of very large systems, because
we do not need to store the whole graph prior to verification.

The method for debugging UML by comparing sequence and state diagrams is
also complementary and close to other methods based on translating statecharts
into Promela, the input language of the model checker SPIN. All these approaches
([LMM99], [LP99], [MLSH98], [SKM01]) consider on-the-fly model checking, and
the main differences among them are in the translation scheme to Promela and the
way of considering the properties to be verified.

Latella et al.’s [LMM99] proposal for using temporal logic to define desirable
(undesirable) scenarios also corresponds to partial verification, because a practical
temporal formula only represents very specific fragments of the real executions in the
system. The work by Mikk et al.[MLSH98] also considers temporal logic to represent
the properties. These two works employ different semantics for statechars. The first
one describes a new semantics, while the second one uses the statechart semantics
implemented by the commercial tools of I-logix. Being temporal logic outside the
UML framework, our approach is more suitable for the way UML software engineers
normally work. A related and non-explored alternative closer to UML could be the
use of OCL as a property language.

Tool vUML [LP99], although keeps Promela hidden to the user, only supports
the verification of general properties of statecharts, corresponding to Phase 1 in our
methodology. The authors employ collaboration diagrams to create the Promela
configuration to be analyzed, but not as a notation for properties.

HUGO [SKM01] also employs Promela and SPIN as the core verification tech-
nology, but its users work with UML descriptions. HUGO verifies whether the
desirable behavior described by a collaboration diagram is feasible for a set of UML
state machines (equivalent to our Phase 2.)

Our work is mainly focused on the use of existing tools for SDL and MSC, because
it is expected that SDL and UML will have a parallel development in the next
years. For example, the ITU has approved a recommendation for using both formal
methods combined [ITU109], and the OMG has recommended SDL as an action
language for UML1.4 [OMG02]. So, SDL-based tools seem to be more suitable to
support debugging UML with model checking than Promela-based tools.

Our conclusion is that the proposed partial verification method is clearly sup-
ported by current trends in the use of formal methods for automatic analysis of
software systems[CW96]. Furthermore, we believe that usual practice in object ori-
ented design is to start by giving desirable use-cases in UML but limiting attention
to only one piece of the behavior. All the views are extended with new details at
the same time, so the verification of statecharts and sequence diagrams can be done
incrementally. This practice satisfies our proposal of partial scenarios.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 115

DEBUGGING UML DESIGNS WITH MODEL CHECKING

REFERENCES

[Barn01] Barnard J., Use-Case Tree, Journal of Object Oriented Programming
13(10):19–24, Feb.2001.

[BRJ98] Booch G., Rumbagugh J., Jacobson I., The Unified Modelling Language
User Guide, Addison Wesley, 1998

[CES86] Clarke E.M., Emerson, E. A., Sistla A.P.: Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications,
ACM Trans. on Programming Languages and Systems, 8 (2):244–263,
1986.

[CGL94] Clarke M., Grumberg O., Long D.E., Model Checking and Abstraction,
ACM Transaction on Languages and Systems, 16(5): 1512–1245, 1994.

[CW96] Clarke E.M., Wing J.M.: Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys, 28(4):626–643, 1996.

[GM00] Gallardo M.M., Merino P.: A Practical Method to Integrate Abstrac-
tions into SDL and MSC based Tools. 5th International ERCIM Work-
shop on Formal Methods for Industrial Critical Systems, GMD Report
91, 2000.

[GM99] Gallardo M.M., Merino P.: A Framework for Automatic Construction
of Abstract PROMELA Models. In Theoretical and Practical Aspects
of SPIN Model Checking, Lecture Notes in Computer Science 1680:184–
199, 1999.

[Holz91] Holzmann G.J.: Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[ITU100] ITU-T, Z.100 — Specification and Description Language (SDL), ITU-
T, 2000

[ITU109] ITU-T, Z.109 — SDL combined with UML, ITU-T,1999.

[ITU120] ITU-T, Z.120 — Message sequence chart (MSC), ITU-T,2000.

[LMM99] Latella D., Majzik I., Massink M.: Automatic Verification of a Be-
havioural Subset of UML Statechart Diagrams Using the SPIN Model-
checker. Formal Aspects of Computing 11(6):637–664, 1999.

[LP99] Lilius J., Porres Paltor I., vUML: a Tool for Verifying UML Models,
14th IEEE International Conference on Automated Software Engineer-
ing (ASE’99), pp. 255–258 1999.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 2

5 CONCLUDING REMARKS

[MLSH98] Mikk E., Lakhnech Y., Siegel M. and Holzmann G.J, Implementing
Statecharts in Promela/SPIN, Proceedings of Workshop on Industrial-
strength Formal Specification Techniques (WIFT’98), 1998.

[OMG02] Object Management Group (OMG) , OMG Unified Modelling Lan-
guage Specification (Action Semantics), UML 1.4 with Action Seman-
tics, http://www.omg.org, January, 2002.

[SKM01] Schäfer T., Knapp A. and Merz, S., Model Checking UML State Ma-
chines and Collaborations, Electronic Notes in Theoretical Computer
Science 55(3):19–24, 13 pages, 2001.

ABOUT THE AUTHORS

Maŕıa del Mar Gallardo is Associate Professor at the Depart-
ment of Computer Science of the University of Málaga (Spain). She
received a Ph.D. in Computer Science from the same University in
1997 with a thesis on the use of abstract interpretation to improve
the execution of concurrent logic languages. Her work is currently
focused on abstract model checking. She can be reached at gal-
lardo@lcc.uma.es and http://www.lcc.uma.es/∼gallardo.

Pedro Merino got his PhD in Computer Science in 1998. He is
Associate Professor at the University of Málaga, Spain. He works
on model checking for software and for communication protocols.
He is also interested in active networks, especially in the integra-
tion of performance and safety analysis. He can be reached at pe-
dro@lcc.uma.es and http://www.lcc.uma.es/∼pedro.

Ernesto Pimentel is Associate Professor at the University
of Malaga. He got his PhD in Computer Science in 1993,
and his research activity is related with the application of for-
mal methods to software engineering, including topics like mod-
els for concurrency, component-based software development, and
abstract model checking. More information is available at:
http://www.lcc.uma.es/∼ernesto.

VOL 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 117

http://www.omg.org
mailto:gallardo@lcc.uma.es
mailto:gallardo@lcc.uma.es
http://www.lcc.uma.es/$sim $gallardo
mailto:pedro@lcc.uma.es
mailto:pedro@lcc.uma.es
http://www.lcc.uma.es/$sim $pedro
http://www.lcc.uma.es/$sim $ernesto

