

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

Cite this article as follows: Rushikesh K. Joshi: What is Common between Generic Services and
Interface Navigation?, in Journal of Object Technology, vol. 1, no. 1, May-June 2002, pages 125-
132, http://www.jot.fm/issues/issue_2002_05/article4

What is Common Between Generic
Services and Interface Navigation?

Rushikesh K. Joshi, Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

Abstract

Generic services and interface navigation in object oriented systems can be formulated
in terms of specific typecasting sequences over narrowing and widening operations.
With examples, the commonality and difference between the two are brought out with
reference to typecasting. Consequences of specific typecasting sequences to their
implementation in a distributed environment are highlighted.

1 A GENERIC SERVICE

A generic service is applicable to various contexts, since it is designed to cover a wide
range of types. A naming service such as CORBA naming service [5] is an example of a
generically applicable service in a distributed environment. The service essentially
maintains mappings from object names to object handles, with object name as key. To
make naming service a generically applicable component, it must not be made to handle
actual object types. For example, with reference to the class hierarchy shown in Figure 1,
a naming service that maps object names to handles of type LocatableObject is a generic
component. Whereas, a naming service designed to map object names to objects of type
ObjectType2 is not a generic component. The former is applicable to hold object name,
object handle tuples for any type of object in the hierarchy, whereas, the latter can only
handle objects of type ObjectType2.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/article4

 WHAT IS COMMON BETWEEN GENERIC SERVICES AND INTERFAE NAVIGATION?

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

2 INTERFACE NAVIGATION

Interface navigation allows a client having a handle to an object through one of its
multiple interfaces to navigate through its other interfaces. Consider the class hierarchy
shown in Figure 2. By interface navigation, a client having a handle to one of all the
interfaces implemented by a shared implementation may be allowed to obtain a handle to
any of the N interfaces implemented by the shared implementation.

ObjectType1

LocatableObject

 ObjectTypeAny ObjectType2 …

Figure 1. Hierarchy in a Generic Service

InterfaceType1 InterfaceType2 InterfaceTypeN

 ObjectImpl

…

Figure 2. Hierarchy in Interface Navigation

Typecasting Sequences

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

3 TYPECASTING SEQUENCES

The above two applications are based on two different object gluing patterns. A generic
service uses multiple sub-classing, whereas, interface navigation uses multiple super-
classing, or multiple inheritance. Both use sequences of typecasting specific to them. In
an inheritance hierarchy, typecasting is either a widening operation, or a narrowing
operation. The widening and narrowing operation sequences are subjected to type safety
rules followed by the programming environment used for implementation. For example,
JAVA [1] throws an exception upon a type-mismatch, whereas, Smalltalk [2] deals with
this problem during method binding time, while Meyer prescribes an assignment attempt
statement [3], which results in null assignment upon violation of type conformance.

A generic service-based application uses two typecasting operations, widening
followed by narrowing as shown in Figure 3. Operation 2 narrows the result of operation
1. It can be noted that operation 2* shown in the figure is an incorrect operation. An
incorrect operation needs to be prohibited at programming level through an
implementation of a type-safety mechanism.

An example of interface navigation is a sequence of three typecasting operations,
widening, narrowing and widening, as shown in Figure 4. The third operation widens a
result of narrowing operation performed on a result of widening operation. In the figure,
3, 3* and 3** are examples of permissible widening operations performed on result of
operation 2.

LocatableObject

ObjectType1 ObjectType2 ObjectTypeAny

1

2

2*

…

Figure 3. Typecasting Sequence in a Generic Service-
based Application

 WHAT IS COMMON BETWEEN GENERIC SERVICES AND INTERFAE NAVIGATION?

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Figure 4. Typecasting Sequence in an Interface Navigation-based Application

4 REALIZING A GENERIC SERVICE

Table 1 identifies the responsibilities of narrowing and widening operations in a generic
service-based application. The arrow ids are as shown in Figure 3.

Table 1: Typecasting Responsibilities in a Generic Service-based Application

Arrow Id Operation Who performs the operation

1 Widening Client of Generic Service (source client, e.g. server
hosting object)

2 Narrowing Client of Generic Service (destination client, e.g.
process which wants to use the object)

The first operation is a widening operation, which needs to be performed by the client of
the generic service. The interface of the generic service expects from the client a handle
of type LocatableObject. The client in this case is typically the server hosting the object,
or the object itself.

In response to a quarry, the generic service returns to the caller, a handle of type
LocatableObject that needs to be typecasted to a handle of the desired object type. This
step also is performed at the caller, which is another client of the generic service. The
second type of client is the user of the object that is registered with the generic service.
Since clients of a generic service perform both operations, the latter does not need to
know the actual types of objects registering with it.

In a distributed environment, implementation of arrow 2 at client side conflicts with
hiding of implementation types. Addition of one more layer of interface type as shown in
Figure 5 solves this problem. The additional interface layer allows the implementation
types realizing the interface to be hidden.

InterfaceType2 InterfaceType1

ObjectImpl

InterfaceTypeN

1

2

3*

…
3**

3

Realizing a Generic Service

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 129

Figure 5. Generic Services in Distributed Environment

In Figure 5, a generic service client acting as a user of the registered object accesses the
object through the intermediate interface type rather than the implementation type. The
new responsibilities of typecasting may be modeled as given in Table 2. This solution is
typical to a CORBA-based application.

Table 2: Typecasting Responsibilities in a Generic Service-based Application in a Distributed Environment

Arrow Id Operation Who performs the operation

1# Widening Client of Generic Service (source client, e.g. Server
hosting the object)

1 Widening Client of Generic Service (source client, e.g. server
hosting the object)

2 Narrowing Client of Generic Service (destination client, e.g. process
which wants to use the object)

5 REALIZING INTERFACE NAVIGATION

The typecasting responsibilities in an interface navigation based-application are captured
in Table 3. The arrow ids are as shown in Figure 4.

Table 3: Typecasting Responsibilities in an Interface Navigation-based Application

Arrow Id Operation Who performs the operation

1

Widening Server hosting object's implementation

2

Narrowing

Client accessing the object through an interface

3

Widening

Client accessing the object through an interface

The widening operation at arrow 1 provides the client of the object a handle to the object
through the desired interface type. The server, which hosts object’s implementation, is

ObjectImpl1 ObjectType1 LocatableObject
1# 1

2

 WHAT IS COMMON BETWEEN GENERIC SERVICES AND INTERFAE NAVIGATION?

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

responsible for the first widening operation since the server hosting the object
implementation knows the implementation type.

Navigation is an operation performed by the client of an object. The client typically
holds an interface handle and obtains another. Arrows 2 and 3 together perform the
navigation. Since the client is the originator of a navigation request, the client itself must
perform both the typecasting operations.

A consequence of this constraint is that the client of the object needs to know what
the implementation type is. While in a single address space environments such as a C++
[6] process, this solution does not pose considerable difficulties; the constraint becomes a
bottleneck for distributed programming environments desiring to protect implementation
types from being exposed to clients of the implementations. This problem may be solved
in two ways.

In the first solution, an additional interface layer may be supported as shown in
Figure 6. This solution requires that the implementation must support a unifying
intermediate interface, which explicitly inherits from all its multiple interfaces. This
solution is similar to the solution adopted for generic services (Figure 5).

Figure 6. Navigation in a Distributed Environment

The typecasting responsibilities are shown in Table 4. Since an intermediate layer of
interface separates the implementation, the clients located on a remote machine are not
required to narrow to an implementation type hidden on a remote machine. Typecasting
performed at client is limited to interface types.

InterfaceType2 InterfaceType1

ObjectImpl

InterfaceTypeN

1

2

3*

…
3**

3

InterfaceUnifier

1#

Realizing Interface Navigation

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

Table 4: Typecasting Responsibilities in an Interface Navigation-based Application in a Distributed Environment

Arrow Id Operation Who performs the operation
1# Widening Server hosting object's implementation

1 Widening Server hosting object's implementation

2 Narrowing Client accessing the object through an interface

3 Widening Client accessing the object through an interface

Alternatively, in absence of enforcement of a unifying interface, typecasting maybe
performed by sending the typecasting request back through the interface handle available
with the client. The implementation then performs a local type-cast to the desired
interface and returns the typecasted handle in response to this query. This solution can be
seen in COM-based systems [4]. A constraint on this solution is that the query for
typecasting must indicate the desired interface type as an argument. If metatypes are not
supported in the programming environment, the typecasting queries need to encode the
types in terms of other recognized types such as character strings.

6 CONCLUSIONS

Generic services and interface navigation are modeled as typecasting sequences.
Implementation consequences of typecasting sequences in distributed environments are
discussed. Since a desire for hiding of implementation types conflicts with a typecasting
request, if the latter has to be performed by the client, a suitable solution needs to be
adopted by the distributed environment. Some solutions were discussed and related to
existing paradigms.

REFERENCES

[1] K. Arnold and J. Gosling, The JAVA Programming Language, Addison Wesley,
1998.

[2] A. Goldberg, D. Robson, Smaltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

[3] B. Meyer, Object Oriented Software Construction, Second Edition, Prentice-Hall,
1997.

[4] Microsoft Corporation, The COM Specification, 1995.

 WHAT IS COMMON BETWEEN GENERIC SERVICES AND INTERFAE NAVIGATION?

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

[5] Object Management Group, COS Naming Service Specification, February 2001.

[6] Stroustrup, C++ Programming Language, Third Edition, Addison Wesley, 1997.

About the author

Rushikesh K Joshi is with the Department of Computer Science and
Engineering at Indian Institute of Technology, Bombay. He works on
object oriented systems and architectures. His recent efforts have been
on the design and development of dynamically pluggable first class
filter objects for various object oriented programming environments. He
is also interested in the development of teaching methods for imparting

classroom education in the field of object oriented software development, especially
analysis and design. He can be reached at rkj@cse.iitb.ac.in.

