
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 6, November-December 2003

Cite this book review as follows: Charles Ashbacher: Book review of “The Object Constraint
Language Second Edition, Getting Your Models Ready for MDA”, in Journal of Object
Technology, vol. 2, no. 6, November-December 2003, pp.139-140.
http://www.jot.fm/books/review11

Book Review

The Object Constraint Language
Second Edition, Getting Your Models
Ready for MDA

by Jos Warmer and Anneke Kleppe, Addison-Wesley, Boston, MA, 2003. 206
pp., $39.99(paper). ISBN 0-321-17936-6

Reviewed by Charles Ashbacher

As a mathematician, I have always been drawn to the more formal programming methods
of the Object Constraint Language (OCL). With it, you can place precise mathematical
descriptions of what must be true before the code executes and what is guaranteed to be
true after the code has run. Given the concise nature of mathematical notation, the OCL
expressions also can replace many times their text in comments. The combination of
Unified Modeling Language (UML) and OCL is a powerful one, allowing you to
precisely describe the actions that code is expected to perform. However, the OCL is
unlike other formal mathematical languages in that it must change in response to new
ways of creating code.

One of the newest ways to design software systems is to use Model Driven
Architectures (MDAs). An MDA is a high level framework that describes how models
can be translated from language to language. Since the purpose is to allow for the
translation to be done by machine, it is necessary for all restrictions to be written in a
clear, unambiguous manner. Currently, the MDA process is divided into three steps:

1. The Platform Independent Model (PIM), which is at the highest level of
abstraction and is independent of any specific technology.

2. The PIM is then translated into one or more Platform Specific Models (PSMs),
where platform specific features are incorporated into each PSM.

3. Each PSM is then converted into code to be run on the specific platform.

http://www.jot.fm
http://www.jot.fm/books/review11

REVIEW OF “THE OBJECT CONSTRAINT LANGUAGE SECOND EDITION, GETTING YOUR

MODELS READY FOR MDA”

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

When I first encountered the fundamentals of MDAs, my skepticism meter rose to a high
level. Even with the precision of UML, creating accurate models is very hard, and
creating appropriate code from those models is probably harder. Sure, it is possible to
create the constructors, setters and getters and other simple components of a class
automatically, but code is so complex that it is difficult to look at a model and know
precisely what it is supposed to do.

After reading this book, the level of my skepticism meter has dropped quite a bit.
From the presentation, it is easy to see how important OCL is to the accurate rendition of
code from models. In fact, it is hard to believe that MDA could possibly succeed without
OCL being heavily incorporated into the models.

The opening chapter of the book is a brief explanation of MDAs and how UML and
OCL are used in combination to create the models. A solid introduction to the MDA way
of doing things, it also describes the foundations, but not the specifics of OCL. It is
assumed that the reader is familiar with the UML. In chapter two, the OCL is described
using an example of a customer loyalty program. This is an excellent example, as it is
easy to understand and allows most of the basic expressions of the OCL to be used.

Chapter three is where the specifics of how the OCL is used in models are covered.
While the examples are well done, one does not skim this chapter and understand it. The
combination of diagrams and constraints must be read with a great deal of care in order to
understand them. I was impressed with this approach, as the authors did not sacrifice
accuracy of rendition for simplicity of understanding. The coverage of chapter four is in
how the OCL is implemented and chapter five describes how the structures of the OCL
are used in the creation of MDA models. This is where the UML and OCL
metalanguages are merged to describe the functions of software. Once again, be prepared
to spend some time in examining the diagrams in great detail. I found myself reading and
rereading some of the examples before I achieved an acceptable level of understanding.

The final sections of the book form an OCL reference manual, where many of the
expressions of the OCL are demonstrated in the appropriate context. In general, they are
demonstrated in circumstances independent of an MDA model, which is an appropriate
simplification.

There are reasons to believe that the MDA approach to software is not yet mature
enough to be trusted. Nevertheless, the advantages of using it in any way are enormous,
and it cannot be used without a way to accurately express the environment in which
segments of code are to run. The OCL provides a way to describe the environment and
from this book you can learn how the UML and the OCL can be combined to create
models with the required degree of precision necessary for the automatic translation of an
MDA into code.

